Evaluate
\frac{59}{52}\approx 1.134615385
Factor
\frac{59}{2 ^ {2} \cdot 13} = 1\frac{7}{52} = 1.1346153846153846
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)59}\\\end{array}
Use the 1^{st} digit 5 from dividend 59
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)59}\\\end{array}
Since 5 is less than 52, use the next digit 9 from dividend 59 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)59}\\\end{array}
Use the 2^{nd} digit 9 from dividend 59
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)59}\\\phantom{52)}\underline{\phantom{}52\phantom{}}\\\phantom{52)9}7\\\end{array}
Find closest multiple of 52 to 59. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 59 to get reminder 7. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }7
Since 7 is less than 52, stop the division. The reminder is 7. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}