Evaluate
\frac{58921}{21}\approx 2805.761904762
Factor
\frac{58921}{3 \cdot 7} = 2805\frac{16}{21} = 2805.7619047619046
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)58921}\\\end{array}
Use the 1^{st} digit 5 from dividend 58921
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)58921}\\\end{array}
Since 5 is less than 21, use the next digit 8 from dividend 58921 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)58921}\\\end{array}
Use the 2^{nd} digit 8 from dividend 58921
\begin{array}{l}\phantom{21)}02\phantom{4}\\21\overline{)58921}\\\phantom{21)}\underline{\phantom{}42\phantom{999}}\\\phantom{21)}16\\\end{array}
Find closest multiple of 21 to 58. We see that 2 \times 21 = 42 is the nearest. Now subtract 42 from 58 to get reminder 16. Add 2 to quotient.
\begin{array}{l}\phantom{21)}02\phantom{5}\\21\overline{)58921}\\\phantom{21)}\underline{\phantom{}42\phantom{999}}\\\phantom{21)}169\\\end{array}
Use the 3^{rd} digit 9 from dividend 58921
\begin{array}{l}\phantom{21)}028\phantom{6}\\21\overline{)58921}\\\phantom{21)}\underline{\phantom{}42\phantom{999}}\\\phantom{21)}169\\\phantom{21)}\underline{\phantom{}168\phantom{99}}\\\phantom{21)99}1\\\end{array}
Find closest multiple of 21 to 169. We see that 8 \times 21 = 168 is the nearest. Now subtract 168 from 169 to get reminder 1. Add 8 to quotient.
\begin{array}{l}\phantom{21)}028\phantom{7}\\21\overline{)58921}\\\phantom{21)}\underline{\phantom{}42\phantom{999}}\\\phantom{21)}169\\\phantom{21)}\underline{\phantom{}168\phantom{99}}\\\phantom{21)99}12\\\end{array}
Use the 4^{th} digit 2 from dividend 58921
\begin{array}{l}\phantom{21)}0280\phantom{8}\\21\overline{)58921}\\\phantom{21)}\underline{\phantom{}42\phantom{999}}\\\phantom{21)}169\\\phantom{21)}\underline{\phantom{}168\phantom{99}}\\\phantom{21)99}12\\\end{array}
Since 12 is less than 21, use the next digit 1 from dividend 58921 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0280\phantom{9}\\21\overline{)58921}\\\phantom{21)}\underline{\phantom{}42\phantom{999}}\\\phantom{21)}169\\\phantom{21)}\underline{\phantom{}168\phantom{99}}\\\phantom{21)99}121\\\end{array}
Use the 5^{th} digit 1 from dividend 58921
\begin{array}{l}\phantom{21)}02805\phantom{10}\\21\overline{)58921}\\\phantom{21)}\underline{\phantom{}42\phantom{999}}\\\phantom{21)}169\\\phantom{21)}\underline{\phantom{}168\phantom{99}}\\\phantom{21)99}121\\\phantom{21)}\underline{\phantom{99}105\phantom{}}\\\phantom{21)999}16\\\end{array}
Find closest multiple of 21 to 121. We see that 5 \times 21 = 105 is the nearest. Now subtract 105 from 121 to get reminder 16. Add 5 to quotient.
\text{Quotient: }2805 \text{Reminder: }16
Since 16 is less than 21, stop the division. The reminder is 16. The topmost line 02805 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2805.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}