Evaluate
\frac{294}{13}\approx 22.615384615
Factor
\frac{2 \cdot 3 \cdot 7 ^ {2}}{13} = 22\frac{8}{13} = 22.615384615384617
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)588}\\\end{array}
Use the 1^{st} digit 5 from dividend 588
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)588}\\\end{array}
Since 5 is less than 26, use the next digit 8 from dividend 588 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)588}\\\end{array}
Use the 2^{nd} digit 8 from dividend 588
\begin{array}{l}\phantom{26)}02\phantom{4}\\26\overline{)588}\\\phantom{26)}\underline{\phantom{}52\phantom{9}}\\\phantom{26)9}6\\\end{array}
Find closest multiple of 26 to 58. We see that 2 \times 26 = 52 is the nearest. Now subtract 52 from 58 to get reminder 6. Add 2 to quotient.
\begin{array}{l}\phantom{26)}02\phantom{5}\\26\overline{)588}\\\phantom{26)}\underline{\phantom{}52\phantom{9}}\\\phantom{26)9}68\\\end{array}
Use the 3^{rd} digit 8 from dividend 588
\begin{array}{l}\phantom{26)}022\phantom{6}\\26\overline{)588}\\\phantom{26)}\underline{\phantom{}52\phantom{9}}\\\phantom{26)9}68\\\phantom{26)}\underline{\phantom{9}52\phantom{}}\\\phantom{26)9}16\\\end{array}
Find closest multiple of 26 to 68. We see that 2 \times 26 = 52 is the nearest. Now subtract 52 from 68 to get reminder 16. Add 2 to quotient.
\text{Quotient: }22 \text{Reminder: }16
Since 16 is less than 26, stop the division. The reminder is 16. The topmost line 022 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}