Evaluate
\frac{147}{16}=9.1875
Factor
\frac{3 \cdot 7 ^ {2}}{2 ^ {4}} = 9\frac{3}{16} = 9.1875
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)588}\\\end{array}
Use the 1^{st} digit 5 from dividend 588
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)588}\\\end{array}
Since 5 is less than 64, use the next digit 8 from dividend 588 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)588}\\\end{array}
Use the 2^{nd} digit 8 from dividend 588
\begin{array}{l}\phantom{64)}00\phantom{4}\\64\overline{)588}\\\end{array}
Since 58 is less than 64, use the next digit 8 from dividend 588 and add 0 to the quotient
\begin{array}{l}\phantom{64)}00\phantom{5}\\64\overline{)588}\\\end{array}
Use the 3^{rd} digit 8 from dividend 588
\begin{array}{l}\phantom{64)}009\phantom{6}\\64\overline{)588}\\\phantom{64)}\underline{\phantom{}576\phantom{}}\\\phantom{64)9}12\\\end{array}
Find closest multiple of 64 to 588. We see that 9 \times 64 = 576 is the nearest. Now subtract 576 from 588 to get reminder 12. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }12
Since 12 is less than 64, stop the division. The reminder is 12. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}