Evaluate
\frac{29}{9}\approx 3.222222222
Factor
\frac{29}{3 ^ {2}} = 3\frac{2}{9} = 3.2222222222222223
Share
Copied to clipboard
\begin{array}{l}\phantom{1800)}\phantom{1}\\1800\overline{)5800}\\\end{array}
Use the 1^{st} digit 5 from dividend 5800
\begin{array}{l}\phantom{1800)}0\phantom{2}\\1800\overline{)5800}\\\end{array}
Since 5 is less than 1800, use the next digit 8 from dividend 5800 and add 0 to the quotient
\begin{array}{l}\phantom{1800)}0\phantom{3}\\1800\overline{)5800}\\\end{array}
Use the 2^{nd} digit 8 from dividend 5800
\begin{array}{l}\phantom{1800)}00\phantom{4}\\1800\overline{)5800}\\\end{array}
Since 58 is less than 1800, use the next digit 0 from dividend 5800 and add 0 to the quotient
\begin{array}{l}\phantom{1800)}00\phantom{5}\\1800\overline{)5800}\\\end{array}
Use the 3^{rd} digit 0 from dividend 5800
\begin{array}{l}\phantom{1800)}000\phantom{6}\\1800\overline{)5800}\\\end{array}
Since 580 is less than 1800, use the next digit 0 from dividend 5800 and add 0 to the quotient
\begin{array}{l}\phantom{1800)}000\phantom{7}\\1800\overline{)5800}\\\end{array}
Use the 4^{th} digit 0 from dividend 5800
\begin{array}{l}\phantom{1800)}0003\phantom{8}\\1800\overline{)5800}\\\phantom{1800)}\underline{\phantom{}5400\phantom{}}\\\phantom{1800)9}400\\\end{array}
Find closest multiple of 1800 to 5800. We see that 3 \times 1800 = 5400 is the nearest. Now subtract 5400 from 5800 to get reminder 400. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }400
Since 400 is less than 1800, stop the division. The reminder is 400. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}