Solve for x
x = \frac{\sqrt{5593} + 63}{116} \approx 1.187813469
x=\frac{63-\sqrt{5593}}{116}\approx -0.101606572
Graph
Share
Copied to clipboard
58x^{2}-63x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-63\right)±\sqrt{\left(-63\right)^{2}-4\times 58\left(-7\right)}}{2\times 58}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 58 for a, -63 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-63\right)±\sqrt{3969-4\times 58\left(-7\right)}}{2\times 58}
Square -63.
x=\frac{-\left(-63\right)±\sqrt{3969-232\left(-7\right)}}{2\times 58}
Multiply -4 times 58.
x=\frac{-\left(-63\right)±\sqrt{3969+1624}}{2\times 58}
Multiply -232 times -7.
x=\frac{-\left(-63\right)±\sqrt{5593}}{2\times 58}
Add 3969 to 1624.
x=\frac{63±\sqrt{5593}}{2\times 58}
The opposite of -63 is 63.
x=\frac{63±\sqrt{5593}}{116}
Multiply 2 times 58.
x=\frac{\sqrt{5593}+63}{116}
Now solve the equation x=\frac{63±\sqrt{5593}}{116} when ± is plus. Add 63 to \sqrt{5593}.
x=\frac{63-\sqrt{5593}}{116}
Now solve the equation x=\frac{63±\sqrt{5593}}{116} when ± is minus. Subtract \sqrt{5593} from 63.
x=\frac{\sqrt{5593}+63}{116} x=\frac{63-\sqrt{5593}}{116}
The equation is now solved.
58x^{2}-63x-7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
58x^{2}-63x-7-\left(-7\right)=-\left(-7\right)
Add 7 to both sides of the equation.
58x^{2}-63x=-\left(-7\right)
Subtracting -7 from itself leaves 0.
58x^{2}-63x=7
Subtract -7 from 0.
\frac{58x^{2}-63x}{58}=\frac{7}{58}
Divide both sides by 58.
x^{2}-\frac{63}{58}x=\frac{7}{58}
Dividing by 58 undoes the multiplication by 58.
x^{2}-\frac{63}{58}x+\left(-\frac{63}{116}\right)^{2}=\frac{7}{58}+\left(-\frac{63}{116}\right)^{2}
Divide -\frac{63}{58}, the coefficient of the x term, by 2 to get -\frac{63}{116}. Then add the square of -\frac{63}{116} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{63}{58}x+\frac{3969}{13456}=\frac{7}{58}+\frac{3969}{13456}
Square -\frac{63}{116} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{63}{58}x+\frac{3969}{13456}=\frac{5593}{13456}
Add \frac{7}{58} to \frac{3969}{13456} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{63}{116}\right)^{2}=\frac{5593}{13456}
Factor x^{2}-\frac{63}{58}x+\frac{3969}{13456}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{63}{116}\right)^{2}}=\sqrt{\frac{5593}{13456}}
Take the square root of both sides of the equation.
x-\frac{63}{116}=\frac{\sqrt{5593}}{116} x-\frac{63}{116}=-\frac{\sqrt{5593}}{116}
Simplify.
x=\frac{\sqrt{5593}+63}{116} x=\frac{63-\sqrt{5593}}{116}
Add \frac{63}{116} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}