Evaluate
\frac{58}{15}\approx 3.866666667
Factor
\frac{2 \cdot 29}{3 \cdot 5} = 3\frac{13}{15} = 3.8666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)58}\\\end{array}
Use the 1^{st} digit 5 from dividend 58
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)58}\\\end{array}
Since 5 is less than 15, use the next digit 8 from dividend 58 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)58}\\\end{array}
Use the 2^{nd} digit 8 from dividend 58
\begin{array}{l}\phantom{15)}03\phantom{4}\\15\overline{)58}\\\phantom{15)}\underline{\phantom{}45\phantom{}}\\\phantom{15)}13\\\end{array}
Find closest multiple of 15 to 58. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 58 to get reminder 13. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }13
Since 13 is less than 15, stop the division. The reminder is 13. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}