Evaluate
\frac{21}{4}=5.25
Factor
\frac{3 \cdot 7}{2 ^ {2}} = 5\frac{1}{4} = 5.25
Share
Copied to clipboard
\begin{array}{l}\phantom{1100)}\phantom{1}\\1100\overline{)5775}\\\end{array}
Use the 1^{st} digit 5 from dividend 5775
\begin{array}{l}\phantom{1100)}0\phantom{2}\\1100\overline{)5775}\\\end{array}
Since 5 is less than 1100, use the next digit 7 from dividend 5775 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}0\phantom{3}\\1100\overline{)5775}\\\end{array}
Use the 2^{nd} digit 7 from dividend 5775
\begin{array}{l}\phantom{1100)}00\phantom{4}\\1100\overline{)5775}\\\end{array}
Since 57 is less than 1100, use the next digit 7 from dividend 5775 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}00\phantom{5}\\1100\overline{)5775}\\\end{array}
Use the 3^{rd} digit 7 from dividend 5775
\begin{array}{l}\phantom{1100)}000\phantom{6}\\1100\overline{)5775}\\\end{array}
Since 577 is less than 1100, use the next digit 5 from dividend 5775 and add 0 to the quotient
\begin{array}{l}\phantom{1100)}000\phantom{7}\\1100\overline{)5775}\\\end{array}
Use the 4^{th} digit 5 from dividend 5775
\begin{array}{l}\phantom{1100)}0005\phantom{8}\\1100\overline{)5775}\\\phantom{1100)}\underline{\phantom{}5500\phantom{}}\\\phantom{1100)9}275\\\end{array}
Find closest multiple of 1100 to 5775. We see that 5 \times 1100 = 5500 is the nearest. Now subtract 5500 from 5775 to get reminder 275. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }275
Since 275 is less than 1100, stop the division. The reminder is 275. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}