Evaluate
\frac{577}{451}\approx 1.279379157
Factor
\frac{577}{11 \cdot 41} = 1\frac{126}{451} = 1.2793791574279378
Share
Copied to clipboard
\begin{array}{l}\phantom{451)}\phantom{1}\\451\overline{)577}\\\end{array}
Use the 1^{st} digit 5 from dividend 577
\begin{array}{l}\phantom{451)}0\phantom{2}\\451\overline{)577}\\\end{array}
Since 5 is less than 451, use the next digit 7 from dividend 577 and add 0 to the quotient
\begin{array}{l}\phantom{451)}0\phantom{3}\\451\overline{)577}\\\end{array}
Use the 2^{nd} digit 7 from dividend 577
\begin{array}{l}\phantom{451)}00\phantom{4}\\451\overline{)577}\\\end{array}
Since 57 is less than 451, use the next digit 7 from dividend 577 and add 0 to the quotient
\begin{array}{l}\phantom{451)}00\phantom{5}\\451\overline{)577}\\\end{array}
Use the 3^{rd} digit 7 from dividend 577
\begin{array}{l}\phantom{451)}001\phantom{6}\\451\overline{)577}\\\phantom{451)}\underline{\phantom{}451\phantom{}}\\\phantom{451)}126\\\end{array}
Find closest multiple of 451 to 577. We see that 1 \times 451 = 451 is the nearest. Now subtract 451 from 577 to get reminder 126. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }126
Since 126 is less than 451, stop the division. The reminder is 126. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}