Evaluate
\frac{1429019}{200}=7145.095
Factor
\frac{43 \cdot 167 \cdot 199}{2 ^ {3} \cdot 5 ^ {2}} = 7145\frac{19}{200} = 7145.095
Share
Copied to clipboard
\begin{array}{l}\phantom{800)}\phantom{1}\\800\overline{)5716076}\\\end{array}
Use the 1^{st} digit 5 from dividend 5716076
\begin{array}{l}\phantom{800)}0\phantom{2}\\800\overline{)5716076}\\\end{array}
Since 5 is less than 800, use the next digit 7 from dividend 5716076 and add 0 to the quotient
\begin{array}{l}\phantom{800)}0\phantom{3}\\800\overline{)5716076}\\\end{array}
Use the 2^{nd} digit 7 from dividend 5716076
\begin{array}{l}\phantom{800)}00\phantom{4}\\800\overline{)5716076}\\\end{array}
Since 57 is less than 800, use the next digit 1 from dividend 5716076 and add 0 to the quotient
\begin{array}{l}\phantom{800)}00\phantom{5}\\800\overline{)5716076}\\\end{array}
Use the 3^{rd} digit 1 from dividend 5716076
\begin{array}{l}\phantom{800)}000\phantom{6}\\800\overline{)5716076}\\\end{array}
Since 571 is less than 800, use the next digit 6 from dividend 5716076 and add 0 to the quotient
\begin{array}{l}\phantom{800)}000\phantom{7}\\800\overline{)5716076}\\\end{array}
Use the 4^{th} digit 6 from dividend 5716076
\begin{array}{l}\phantom{800)}0007\phantom{8}\\800\overline{)5716076}\\\phantom{800)}\underline{\phantom{}5600\phantom{999}}\\\phantom{800)9}116\\\end{array}
Find closest multiple of 800 to 5716. We see that 7 \times 800 = 5600 is the nearest. Now subtract 5600 from 5716 to get reminder 116. Add 7 to quotient.
\begin{array}{l}\phantom{800)}0007\phantom{9}\\800\overline{)5716076}\\\phantom{800)}\underline{\phantom{}5600\phantom{999}}\\\phantom{800)9}1160\\\end{array}
Use the 5^{th} digit 0 from dividend 5716076
\begin{array}{l}\phantom{800)}00071\phantom{10}\\800\overline{)5716076}\\\phantom{800)}\underline{\phantom{}5600\phantom{999}}\\\phantom{800)9}1160\\\phantom{800)}\underline{\phantom{99}800\phantom{99}}\\\phantom{800)99}360\\\end{array}
Find closest multiple of 800 to 1160. We see that 1 \times 800 = 800 is the nearest. Now subtract 800 from 1160 to get reminder 360. Add 1 to quotient.
\begin{array}{l}\phantom{800)}00071\phantom{11}\\800\overline{)5716076}\\\phantom{800)}\underline{\phantom{}5600\phantom{999}}\\\phantom{800)9}1160\\\phantom{800)}\underline{\phantom{99}800\phantom{99}}\\\phantom{800)99}3607\\\end{array}
Use the 6^{th} digit 7 from dividend 5716076
\begin{array}{l}\phantom{800)}000714\phantom{12}\\800\overline{)5716076}\\\phantom{800)}\underline{\phantom{}5600\phantom{999}}\\\phantom{800)9}1160\\\phantom{800)}\underline{\phantom{99}800\phantom{99}}\\\phantom{800)99}3607\\\phantom{800)}\underline{\phantom{99}3200\phantom{9}}\\\phantom{800)999}407\\\end{array}
Find closest multiple of 800 to 3607. We see that 4 \times 800 = 3200 is the nearest. Now subtract 3200 from 3607 to get reminder 407. Add 4 to quotient.
\begin{array}{l}\phantom{800)}000714\phantom{13}\\800\overline{)5716076}\\\phantom{800)}\underline{\phantom{}5600\phantom{999}}\\\phantom{800)9}1160\\\phantom{800)}\underline{\phantom{99}800\phantom{99}}\\\phantom{800)99}3607\\\phantom{800)}\underline{\phantom{99}3200\phantom{9}}\\\phantom{800)999}4076\\\end{array}
Use the 7^{th} digit 6 from dividend 5716076
\begin{array}{l}\phantom{800)}0007145\phantom{14}\\800\overline{)5716076}\\\phantom{800)}\underline{\phantom{}5600\phantom{999}}\\\phantom{800)9}1160\\\phantom{800)}\underline{\phantom{99}800\phantom{99}}\\\phantom{800)99}3607\\\phantom{800)}\underline{\phantom{99}3200\phantom{9}}\\\phantom{800)999}4076\\\phantom{800)}\underline{\phantom{999}4000\phantom{}}\\\phantom{800)99999}76\\\end{array}
Find closest multiple of 800 to 4076. We see that 5 \times 800 = 4000 is the nearest. Now subtract 4000 from 4076 to get reminder 76. Add 5 to quotient.
\text{Quotient: }7145 \text{Reminder: }76
Since 76 is less than 800, stop the division. The reminder is 76. The topmost line 0007145 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7145.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}