Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

57x^{2}+2x-0.1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 57\left(-0.1\right)}}{2\times 57}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 57 for a, 2 for b, and -0.1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 57\left(-0.1\right)}}{2\times 57}
Square 2.
x=\frac{-2±\sqrt{4-228\left(-0.1\right)}}{2\times 57}
Multiply -4 times 57.
x=\frac{-2±\sqrt{4+22.8}}{2\times 57}
Multiply -228 times -0.1.
x=\frac{-2±\sqrt{26.8}}{2\times 57}
Add 4 to 22.8.
x=\frac{-2±\frac{\sqrt{670}}{5}}{2\times 57}
Take the square root of 26.8.
x=\frac{-2±\frac{\sqrt{670}}{5}}{114}
Multiply 2 times 57.
x=\frac{\frac{\sqrt{670}}{5}-2}{114}
Now solve the equation x=\frac{-2±\frac{\sqrt{670}}{5}}{114} when ± is plus. Add -2 to \frac{\sqrt{670}}{5}.
x=\frac{\sqrt{670}}{570}-\frac{1}{57}
Divide -2+\frac{\sqrt{670}}{5} by 114.
x=\frac{-\frac{\sqrt{670}}{5}-2}{114}
Now solve the equation x=\frac{-2±\frac{\sqrt{670}}{5}}{114} when ± is minus. Subtract \frac{\sqrt{670}}{5} from -2.
x=-\frac{\sqrt{670}}{570}-\frac{1}{57}
Divide -2-\frac{\sqrt{670}}{5} by 114.
x=\frac{\sqrt{670}}{570}-\frac{1}{57} x=-\frac{\sqrt{670}}{570}-\frac{1}{57}
The equation is now solved.
57x^{2}+2x-0.1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
57x^{2}+2x-0.1-\left(-0.1\right)=-\left(-0.1\right)
Add 0.1 to both sides of the equation.
57x^{2}+2x=-\left(-0.1\right)
Subtracting -0.1 from itself leaves 0.
57x^{2}+2x=0.1
Subtract -0.1 from 0.
\frac{57x^{2}+2x}{57}=\frac{0.1}{57}
Divide both sides by 57.
x^{2}+\frac{2}{57}x=\frac{0.1}{57}
Dividing by 57 undoes the multiplication by 57.
x^{2}+\frac{2}{57}x=\frac{1}{570}
Divide 0.1 by 57.
x^{2}+\frac{2}{57}x+\left(\frac{1}{57}\right)^{2}=\frac{1}{570}+\left(\frac{1}{57}\right)^{2}
Divide \frac{2}{57}, the coefficient of the x term, by 2 to get \frac{1}{57}. Then add the square of \frac{1}{57} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{57}x+\frac{1}{3249}=\frac{1}{570}+\frac{1}{3249}
Square \frac{1}{57} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{57}x+\frac{1}{3249}=\frac{67}{32490}
Add \frac{1}{570} to \frac{1}{3249} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{57}\right)^{2}=\frac{67}{32490}
Factor x^{2}+\frac{2}{57}x+\frac{1}{3249}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{57}\right)^{2}}=\sqrt{\frac{67}{32490}}
Take the square root of both sides of the equation.
x+\frac{1}{57}=\frac{\sqrt{670}}{570} x+\frac{1}{57}=-\frac{\sqrt{670}}{570}
Simplify.
x=\frac{\sqrt{670}}{570}-\frac{1}{57} x=-\frac{\sqrt{670}}{570}-\frac{1}{57}
Subtract \frac{1}{57} from both sides of the equation.