57 cm = dm + cm
Solve for c
\left\{\begin{matrix}\\c=\frac{d}{56}\text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=56c\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Share
Copied to clipboard
57cm-cm=dm
Subtract cm from both sides.
56cm=dm
Combine 57cm and -cm to get 56cm.
56mc=dm
The equation is in standard form.
\frac{56mc}{56m}=\frac{dm}{56m}
Divide both sides by 56m.
c=\frac{dm}{56m}
Dividing by 56m undoes the multiplication by 56m.
c=\frac{d}{56}
Divide dm by 56m.
dm+cm=57cm
Swap sides so that all variable terms are on the left hand side.
dm=57cm-cm
Subtract cm from both sides.
dm=56cm
Combine 57cm and -cm to get 56cm.
md=56cm
The equation is in standard form.
\frac{md}{m}=\frac{56cm}{m}
Divide both sides by m.
d=\frac{56cm}{m}
Dividing by m undoes the multiplication by m.
d=56c
Divide 56cm by m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}