Evaluate
\frac{189442}{7}\approx 27063.142857143
Factor
\frac{2 \cdot 11 \cdot 79 \cdot 109}{7} = 27063\frac{1}{7} = 27063.14285714286
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)568326}\\\end{array}
Use the 1^{st} digit 5 from dividend 568326
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)568326}\\\end{array}
Since 5 is less than 21, use the next digit 6 from dividend 568326 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)568326}\\\end{array}
Use the 2^{nd} digit 6 from dividend 568326
\begin{array}{l}\phantom{21)}02\phantom{4}\\21\overline{)568326}\\\phantom{21)}\underline{\phantom{}42\phantom{9999}}\\\phantom{21)}14\\\end{array}
Find closest multiple of 21 to 56. We see that 2 \times 21 = 42 is the nearest. Now subtract 42 from 56 to get reminder 14. Add 2 to quotient.
\begin{array}{l}\phantom{21)}02\phantom{5}\\21\overline{)568326}\\\phantom{21)}\underline{\phantom{}42\phantom{9999}}\\\phantom{21)}148\\\end{array}
Use the 3^{rd} digit 8 from dividend 568326
\begin{array}{l}\phantom{21)}027\phantom{6}\\21\overline{)568326}\\\phantom{21)}\underline{\phantom{}42\phantom{9999}}\\\phantom{21)}148\\\phantom{21)}\underline{\phantom{}147\phantom{999}}\\\phantom{21)99}1\\\end{array}
Find closest multiple of 21 to 148. We see that 7 \times 21 = 147 is the nearest. Now subtract 147 from 148 to get reminder 1. Add 7 to quotient.
\begin{array}{l}\phantom{21)}027\phantom{7}\\21\overline{)568326}\\\phantom{21)}\underline{\phantom{}42\phantom{9999}}\\\phantom{21)}148\\\phantom{21)}\underline{\phantom{}147\phantom{999}}\\\phantom{21)99}13\\\end{array}
Use the 4^{th} digit 3 from dividend 568326
\begin{array}{l}\phantom{21)}0270\phantom{8}\\21\overline{)568326}\\\phantom{21)}\underline{\phantom{}42\phantom{9999}}\\\phantom{21)}148\\\phantom{21)}\underline{\phantom{}147\phantom{999}}\\\phantom{21)99}13\\\end{array}
Since 13 is less than 21, use the next digit 2 from dividend 568326 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0270\phantom{9}\\21\overline{)568326}\\\phantom{21)}\underline{\phantom{}42\phantom{9999}}\\\phantom{21)}148\\\phantom{21)}\underline{\phantom{}147\phantom{999}}\\\phantom{21)99}132\\\end{array}
Use the 5^{th} digit 2 from dividend 568326
\begin{array}{l}\phantom{21)}02706\phantom{10}\\21\overline{)568326}\\\phantom{21)}\underline{\phantom{}42\phantom{9999}}\\\phantom{21)}148\\\phantom{21)}\underline{\phantom{}147\phantom{999}}\\\phantom{21)99}132\\\phantom{21)}\underline{\phantom{99}126\phantom{9}}\\\phantom{21)9999}6\\\end{array}
Find closest multiple of 21 to 132. We see that 6 \times 21 = 126 is the nearest. Now subtract 126 from 132 to get reminder 6. Add 6 to quotient.
\begin{array}{l}\phantom{21)}02706\phantom{11}\\21\overline{)568326}\\\phantom{21)}\underline{\phantom{}42\phantom{9999}}\\\phantom{21)}148\\\phantom{21)}\underline{\phantom{}147\phantom{999}}\\\phantom{21)99}132\\\phantom{21)}\underline{\phantom{99}126\phantom{9}}\\\phantom{21)9999}66\\\end{array}
Use the 6^{th} digit 6 from dividend 568326
\begin{array}{l}\phantom{21)}027063\phantom{12}\\21\overline{)568326}\\\phantom{21)}\underline{\phantom{}42\phantom{9999}}\\\phantom{21)}148\\\phantom{21)}\underline{\phantom{}147\phantom{999}}\\\phantom{21)99}132\\\phantom{21)}\underline{\phantom{99}126\phantom{9}}\\\phantom{21)9999}66\\\phantom{21)}\underline{\phantom{9999}63\phantom{}}\\\phantom{21)99999}3\\\end{array}
Find closest multiple of 21 to 66. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 66 to get reminder 3. Add 3 to quotient.
\text{Quotient: }27063 \text{Reminder: }3
Since 3 is less than 21, stop the division. The reminder is 3. The topmost line 027063 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27063.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}