Evaluate
\frac{12}{5}=2.4
Factor
\frac{2 ^ {2} \cdot 3}{5} = 2\frac{2}{5} = 2.4
Share
Copied to clipboard
\begin{array}{l}\phantom{235)}\phantom{1}\\235\overline{)564}\\\end{array}
Use the 1^{st} digit 5 from dividend 564
\begin{array}{l}\phantom{235)}0\phantom{2}\\235\overline{)564}\\\end{array}
Since 5 is less than 235, use the next digit 6 from dividend 564 and add 0 to the quotient
\begin{array}{l}\phantom{235)}0\phantom{3}\\235\overline{)564}\\\end{array}
Use the 2^{nd} digit 6 from dividend 564
\begin{array}{l}\phantom{235)}00\phantom{4}\\235\overline{)564}\\\end{array}
Since 56 is less than 235, use the next digit 4 from dividend 564 and add 0 to the quotient
\begin{array}{l}\phantom{235)}00\phantom{5}\\235\overline{)564}\\\end{array}
Use the 3^{rd} digit 4 from dividend 564
\begin{array}{l}\phantom{235)}002\phantom{6}\\235\overline{)564}\\\phantom{235)}\underline{\phantom{}470\phantom{}}\\\phantom{235)9}94\\\end{array}
Find closest multiple of 235 to 564. We see that 2 \times 235 = 470 is the nearest. Now subtract 470 from 564 to get reminder 94. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }94
Since 94 is less than 235, stop the division. The reminder is 94. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}