Evaluate
56
Factor
2^{3}\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)560}\\\end{array}
Use the 1^{st} digit 5 from dividend 560
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)560}\\\end{array}
Since 5 is less than 10, use the next digit 6 from dividend 560 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)560}\\\end{array}
Use the 2^{nd} digit 6 from dividend 560
\begin{array}{l}\phantom{10)}05\phantom{4}\\10\overline{)560}\\\phantom{10)}\underline{\phantom{}50\phantom{9}}\\\phantom{10)9}6\\\end{array}
Find closest multiple of 10 to 56. We see that 5 \times 10 = 50 is the nearest. Now subtract 50 from 56 to get reminder 6. Add 5 to quotient.
\begin{array}{l}\phantom{10)}05\phantom{5}\\10\overline{)560}\\\phantom{10)}\underline{\phantom{}50\phantom{9}}\\\phantom{10)9}60\\\end{array}
Use the 3^{rd} digit 0 from dividend 560
\begin{array}{l}\phantom{10)}056\phantom{6}\\10\overline{)560}\\\phantom{10)}\underline{\phantom{}50\phantom{9}}\\\phantom{10)9}60\\\phantom{10)}\underline{\phantom{9}60\phantom{}}\\\phantom{10)999}0\\\end{array}
Find closest multiple of 10 to 60. We see that 6 \times 10 = 60 is the nearest. Now subtract 60 from 60 to get reminder 0. Add 6 to quotient.
\text{Quotient: }56 \text{Reminder: }0
Since 0 is less than 10, stop the division. The reminder is 0. The topmost line 056 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 56.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}