Evaluate
\frac{14}{9}\approx 1.555555556
Factor
\frac{2 \cdot 7}{3 ^ {2}} = 1\frac{5}{9} = 1.5555555555555556
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)560}\\\end{array}
Use the 1^{st} digit 5 from dividend 560
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)560}\\\end{array}
Since 5 is less than 360, use the next digit 6 from dividend 560 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)560}\\\end{array}
Use the 2^{nd} digit 6 from dividend 560
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)560}\\\end{array}
Since 56 is less than 360, use the next digit 0 from dividend 560 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)560}\\\end{array}
Use the 3^{rd} digit 0 from dividend 560
\begin{array}{l}\phantom{360)}001\phantom{6}\\360\overline{)560}\\\phantom{360)}\underline{\phantom{}360\phantom{}}\\\phantom{360)}200\\\end{array}
Find closest multiple of 360 to 560. We see that 1 \times 360 = 360 is the nearest. Now subtract 360 from 560 to get reminder 200. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }200
Since 200 is less than 360, stop the division. The reminder is 200. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}