Solve for M
M=\frac{440h}{189}
Solve for h
h=\frac{189M}{440}
Share
Copied to clipboard
56.7M=132h
Multiply 33 and 4 to get 132.
\frac{56.7M}{56.7}=\frac{132h}{56.7}
Divide both sides of the equation by 56.7, which is the same as multiplying both sides by the reciprocal of the fraction.
M=\frac{132h}{56.7}
Dividing by 56.7 undoes the multiplication by 56.7.
M=\frac{440h}{189}
Divide 132h by 56.7 by multiplying 132h by the reciprocal of 56.7.
56.7M=132h
Multiply 33 and 4 to get 132.
132h=56.7M
Swap sides so that all variable terms are on the left hand side.
132h=\frac{567M}{10}
The equation is in standard form.
\frac{132h}{132}=\frac{567M}{10\times 132}
Divide both sides by 132.
h=\frac{567M}{10\times 132}
Dividing by 132 undoes the multiplication by 132.
h=\frac{189M}{440}
Divide \frac{567M}{10} by 132.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}