Factor
\left(8s-1\right)\left(7s+3\right)
Evaluate
\left(8s-1\right)\left(7s+3\right)
Share
Copied to clipboard
a+b=17 ab=56\left(-3\right)=-168
Factor the expression by grouping. First, the expression needs to be rewritten as 56s^{2}+as+bs-3. To find a and b, set up a system to be solved.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -168.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
Calculate the sum for each pair.
a=-7 b=24
The solution is the pair that gives sum 17.
\left(56s^{2}-7s\right)+\left(24s-3\right)
Rewrite 56s^{2}+17s-3 as \left(56s^{2}-7s\right)+\left(24s-3\right).
7s\left(8s-1\right)+3\left(8s-1\right)
Factor out 7s in the first and 3 in the second group.
\left(8s-1\right)\left(7s+3\right)
Factor out common term 8s-1 by using distributive property.
56s^{2}+17s-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
s=\frac{-17±\sqrt{17^{2}-4\times 56\left(-3\right)}}{2\times 56}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-17±\sqrt{289-4\times 56\left(-3\right)}}{2\times 56}
Square 17.
s=\frac{-17±\sqrt{289-224\left(-3\right)}}{2\times 56}
Multiply -4 times 56.
s=\frac{-17±\sqrt{289+672}}{2\times 56}
Multiply -224 times -3.
s=\frac{-17±\sqrt{961}}{2\times 56}
Add 289 to 672.
s=\frac{-17±31}{2\times 56}
Take the square root of 961.
s=\frac{-17±31}{112}
Multiply 2 times 56.
s=\frac{14}{112}
Now solve the equation s=\frac{-17±31}{112} when ± is plus. Add -17 to 31.
s=\frac{1}{8}
Reduce the fraction \frac{14}{112} to lowest terms by extracting and canceling out 14.
s=-\frac{48}{112}
Now solve the equation s=\frac{-17±31}{112} when ± is minus. Subtract 31 from -17.
s=-\frac{3}{7}
Reduce the fraction \frac{-48}{112} to lowest terms by extracting and canceling out 16.
56s^{2}+17s-3=56\left(s-\frac{1}{8}\right)\left(s-\left(-\frac{3}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{8} for x_{1} and -\frac{3}{7} for x_{2}.
56s^{2}+17s-3=56\left(s-\frac{1}{8}\right)\left(s+\frac{3}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
56s^{2}+17s-3=56\times \frac{8s-1}{8}\left(s+\frac{3}{7}\right)
Subtract \frac{1}{8} from s by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
56s^{2}+17s-3=56\times \frac{8s-1}{8}\times \frac{7s+3}{7}
Add \frac{3}{7} to s by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
56s^{2}+17s-3=56\times \frac{\left(8s-1\right)\left(7s+3\right)}{8\times 7}
Multiply \frac{8s-1}{8} times \frac{7s+3}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
56s^{2}+17s-3=56\times \frac{\left(8s-1\right)\left(7s+3\right)}{56}
Multiply 8 times 7.
56s^{2}+17s-3=\left(8s-1\right)\left(7s+3\right)
Cancel out 56, the greatest common factor in 56 and 56.
x ^ 2 +\frac{17}{56}x -\frac{3}{56} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 56
r + s = -\frac{17}{56} rs = -\frac{3}{56}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{17}{112} - u s = -\frac{17}{112} + u
Two numbers r and s sum up to -\frac{17}{56} exactly when the average of the two numbers is \frac{1}{2}*-\frac{17}{56} = -\frac{17}{112}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{17}{112} - u) (-\frac{17}{112} + u) = -\frac{3}{56}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{56}
\frac{289}{12544} - u^2 = -\frac{3}{56}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{56}-\frac{289}{12544} = -\frac{961}{12544}
Simplify the expression by subtracting \frac{289}{12544} on both sides
u^2 = \frac{961}{12544} u = \pm\sqrt{\frac{961}{12544}} = \pm \frac{31}{112}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{17}{112} - \frac{31}{112} = -0.429 s = -\frac{17}{112} + \frac{31}{112} = 0.125
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}