Solve for x (complex solution)
x=\frac{-1+\sqrt{1189}i}{28}\approx -0.035714286+1.231495689i
x=\frac{-\sqrt{1189}i-1}{28}\approx -0.035714286-1.231495689i
Graph
Share
Copied to clipboard
56x^{2}+4x+85=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 56\times 85}}{2\times 56}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 56 for a, 4 for b, and 85 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 56\times 85}}{2\times 56}
Square 4.
x=\frac{-4±\sqrt{16-224\times 85}}{2\times 56}
Multiply -4 times 56.
x=\frac{-4±\sqrt{16-19040}}{2\times 56}
Multiply -224 times 85.
x=\frac{-4±\sqrt{-19024}}{2\times 56}
Add 16 to -19040.
x=\frac{-4±4\sqrt{1189}i}{2\times 56}
Take the square root of -19024.
x=\frac{-4±4\sqrt{1189}i}{112}
Multiply 2 times 56.
x=\frac{-4+4\sqrt{1189}i}{112}
Now solve the equation x=\frac{-4±4\sqrt{1189}i}{112} when ± is plus. Add -4 to 4i\sqrt{1189}.
x=\frac{-1+\sqrt{1189}i}{28}
Divide -4+4i\sqrt{1189} by 112.
x=\frac{-4\sqrt{1189}i-4}{112}
Now solve the equation x=\frac{-4±4\sqrt{1189}i}{112} when ± is minus. Subtract 4i\sqrt{1189} from -4.
x=\frac{-\sqrt{1189}i-1}{28}
Divide -4-4i\sqrt{1189} by 112.
x=\frac{-1+\sqrt{1189}i}{28} x=\frac{-\sqrt{1189}i-1}{28}
The equation is now solved.
56x^{2}+4x+85=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
56x^{2}+4x+85-85=-85
Subtract 85 from both sides of the equation.
56x^{2}+4x=-85
Subtracting 85 from itself leaves 0.
\frac{56x^{2}+4x}{56}=-\frac{85}{56}
Divide both sides by 56.
x^{2}+\frac{4}{56}x=-\frac{85}{56}
Dividing by 56 undoes the multiplication by 56.
x^{2}+\frac{1}{14}x=-\frac{85}{56}
Reduce the fraction \frac{4}{56} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{14}x+\left(\frac{1}{28}\right)^{2}=-\frac{85}{56}+\left(\frac{1}{28}\right)^{2}
Divide \frac{1}{14}, the coefficient of the x term, by 2 to get \frac{1}{28}. Then add the square of \frac{1}{28} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{14}x+\frac{1}{784}=-\frac{85}{56}+\frac{1}{784}
Square \frac{1}{28} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{14}x+\frac{1}{784}=-\frac{1189}{784}
Add -\frac{85}{56} to \frac{1}{784} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{28}\right)^{2}=-\frac{1189}{784}
Factor x^{2}+\frac{1}{14}x+\frac{1}{784}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{28}\right)^{2}}=\sqrt{-\frac{1189}{784}}
Take the square root of both sides of the equation.
x+\frac{1}{28}=\frac{\sqrt{1189}i}{28} x+\frac{1}{28}=-\frac{\sqrt{1189}i}{28}
Simplify.
x=\frac{-1+\sqrt{1189}i}{28} x=\frac{-\sqrt{1189}i-1}{28}
Subtract \frac{1}{28} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}