Evaluate
\frac{56}{31}\approx 1.806451613
Factor
\frac{2 ^ {3} \cdot 7}{31} = 1\frac{25}{31} = 1.8064516129032258
Share
Copied to clipboard
\begin{array}{l}\phantom{31)}\phantom{1}\\31\overline{)56}\\\end{array}
Use the 1^{st} digit 5 from dividend 56
\begin{array}{l}\phantom{31)}0\phantom{2}\\31\overline{)56}\\\end{array}
Since 5 is less than 31, use the next digit 6 from dividend 56 and add 0 to the quotient
\begin{array}{l}\phantom{31)}0\phantom{3}\\31\overline{)56}\\\end{array}
Use the 2^{nd} digit 6 from dividend 56
\begin{array}{l}\phantom{31)}01\phantom{4}\\31\overline{)56}\\\phantom{31)}\underline{\phantom{}31\phantom{}}\\\phantom{31)}25\\\end{array}
Find closest multiple of 31 to 56. We see that 1 \times 31 = 31 is the nearest. Now subtract 31 from 56 to get reminder 25. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }25
Since 25 is less than 31, stop the division. The reminder is 25. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}