Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

55x-200=x^{2}+x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
55x-200=2x^{2}-8x+16
Combine x^{2} and x^{2} to get 2x^{2}.
55x-200-2x^{2}=-8x+16
Subtract 2x^{2} from both sides.
55x-200-2x^{2}+8x=16
Add 8x to both sides.
63x-200-2x^{2}=16
Combine 55x and 8x to get 63x.
63x-200-2x^{2}-16=0
Subtract 16 from both sides.
63x-216-2x^{2}=0
Subtract 16 from -200 to get -216.
-2x^{2}+63x-216=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-63±\sqrt{63^{2}-4\left(-2\right)\left(-216\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 63 for b, and -216 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-63±\sqrt{3969-4\left(-2\right)\left(-216\right)}}{2\left(-2\right)}
Square 63.
x=\frac{-63±\sqrt{3969+8\left(-216\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-63±\sqrt{3969-1728}}{2\left(-2\right)}
Multiply 8 times -216.
x=\frac{-63±\sqrt{2241}}{2\left(-2\right)}
Add 3969 to -1728.
x=\frac{-63±3\sqrt{249}}{2\left(-2\right)}
Take the square root of 2241.
x=\frac{-63±3\sqrt{249}}{-4}
Multiply 2 times -2.
x=\frac{3\sqrt{249}-63}{-4}
Now solve the equation x=\frac{-63±3\sqrt{249}}{-4} when ± is plus. Add -63 to 3\sqrt{249}.
x=\frac{63-3\sqrt{249}}{4}
Divide -63+3\sqrt{249} by -4.
x=\frac{-3\sqrt{249}-63}{-4}
Now solve the equation x=\frac{-63±3\sqrt{249}}{-4} when ± is minus. Subtract 3\sqrt{249} from -63.
x=\frac{3\sqrt{249}+63}{4}
Divide -63-3\sqrt{249} by -4.
x=\frac{63-3\sqrt{249}}{4} x=\frac{3\sqrt{249}+63}{4}
The equation is now solved.
55x-200=x^{2}+x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
55x-200=2x^{2}-8x+16
Combine x^{2} and x^{2} to get 2x^{2}.
55x-200-2x^{2}=-8x+16
Subtract 2x^{2} from both sides.
55x-200-2x^{2}+8x=16
Add 8x to both sides.
63x-200-2x^{2}=16
Combine 55x and 8x to get 63x.
63x-2x^{2}=16+200
Add 200 to both sides.
63x-2x^{2}=216
Add 16 and 200 to get 216.
-2x^{2}+63x=216
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+63x}{-2}=\frac{216}{-2}
Divide both sides by -2.
x^{2}+\frac{63}{-2}x=\frac{216}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{63}{2}x=\frac{216}{-2}
Divide 63 by -2.
x^{2}-\frac{63}{2}x=-108
Divide 216 by -2.
x^{2}-\frac{63}{2}x+\left(-\frac{63}{4}\right)^{2}=-108+\left(-\frac{63}{4}\right)^{2}
Divide -\frac{63}{2}, the coefficient of the x term, by 2 to get -\frac{63}{4}. Then add the square of -\frac{63}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{63}{2}x+\frac{3969}{16}=-108+\frac{3969}{16}
Square -\frac{63}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{63}{2}x+\frac{3969}{16}=\frac{2241}{16}
Add -108 to \frac{3969}{16}.
\left(x-\frac{63}{4}\right)^{2}=\frac{2241}{16}
Factor x^{2}-\frac{63}{2}x+\frac{3969}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{63}{4}\right)^{2}}=\sqrt{\frac{2241}{16}}
Take the square root of both sides of the equation.
x-\frac{63}{4}=\frac{3\sqrt{249}}{4} x-\frac{63}{4}=-\frac{3\sqrt{249}}{4}
Simplify.
x=\frac{3\sqrt{249}+63}{4} x=\frac{63-3\sqrt{249}}{4}
Add \frac{63}{4} to both sides of the equation.