Evaluate
10001
Factor
73\times 137
Share
Copied to clipboard
\begin{array}{l}\phantom{5555)}\phantom{1}\\5555\overline{)55555555}\\\end{array}
Use the 1^{st} digit 5 from dividend 55555555
\begin{array}{l}\phantom{5555)}0\phantom{2}\\5555\overline{)55555555}\\\end{array}
Since 5 is less than 5555, use the next digit 5 from dividend 55555555 and add 0 to the quotient
\begin{array}{l}\phantom{5555)}0\phantom{3}\\5555\overline{)55555555}\\\end{array}
Use the 2^{nd} digit 5 from dividend 55555555
\begin{array}{l}\phantom{5555)}00\phantom{4}\\5555\overline{)55555555}\\\end{array}
Since 55 is less than 5555, use the next digit 5 from dividend 55555555 and add 0 to the quotient
\begin{array}{l}\phantom{5555)}00\phantom{5}\\5555\overline{)55555555}\\\end{array}
Use the 3^{rd} digit 5 from dividend 55555555
\begin{array}{l}\phantom{5555)}000\phantom{6}\\5555\overline{)55555555}\\\end{array}
Since 555 is less than 5555, use the next digit 5 from dividend 55555555 and add 0 to the quotient
\begin{array}{l}\phantom{5555)}000\phantom{7}\\5555\overline{)55555555}\\\end{array}
Use the 4^{th} digit 5 from dividend 55555555
\begin{array}{l}\phantom{5555)}0001\phantom{8}\\5555\overline{)55555555}\\\phantom{5555)}\underline{\phantom{}5555\phantom{9999}}\\\phantom{5555)9999}0\\\end{array}
Find closest multiple of 5555 to 5555. We see that 1 \times 5555 = 5555 is the nearest. Now subtract 5555 from 5555 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{5555)}0001\phantom{9}\\5555\overline{)55555555}\\\phantom{5555)}\underline{\phantom{}5555\phantom{9999}}\\\phantom{5555)9999}5\\\end{array}
Use the 5^{th} digit 5 from dividend 55555555
\begin{array}{l}\phantom{5555)}00010\phantom{10}\\5555\overline{)55555555}\\\phantom{5555)}\underline{\phantom{}5555\phantom{9999}}\\\phantom{5555)9999}5\\\end{array}
Since 5 is less than 5555, use the next digit 5 from dividend 55555555 and add 0 to the quotient
\begin{array}{l}\phantom{5555)}00010\phantom{11}\\5555\overline{)55555555}\\\phantom{5555)}\underline{\phantom{}5555\phantom{9999}}\\\phantom{5555)9999}55\\\end{array}
Use the 6^{th} digit 5 from dividend 55555555
\begin{array}{l}\phantom{5555)}000100\phantom{12}\\5555\overline{)55555555}\\\phantom{5555)}\underline{\phantom{}5555\phantom{9999}}\\\phantom{5555)9999}55\\\end{array}
Since 55 is less than 5555, use the next digit 5 from dividend 55555555 and add 0 to the quotient
\begin{array}{l}\phantom{5555)}000100\phantom{13}\\5555\overline{)55555555}\\\phantom{5555)}\underline{\phantom{}5555\phantom{9999}}\\\phantom{5555)9999}555\\\end{array}
Use the 7^{th} digit 5 from dividend 55555555
\begin{array}{l}\phantom{5555)}0001000\phantom{14}\\5555\overline{)55555555}\\\phantom{5555)}\underline{\phantom{}5555\phantom{9999}}\\\phantom{5555)9999}555\\\end{array}
Since 555 is less than 5555, use the next digit 5 from dividend 55555555 and add 0 to the quotient
\begin{array}{l}\phantom{5555)}0001000\phantom{15}\\5555\overline{)55555555}\\\phantom{5555)}\underline{\phantom{}5555\phantom{9999}}\\\phantom{5555)9999}5555\\\end{array}
Use the 8^{th} digit 5 from dividend 55555555
\begin{array}{l}\phantom{5555)}00010001\phantom{16}\\5555\overline{)55555555}\\\phantom{5555)}\underline{\phantom{}5555\phantom{9999}}\\\phantom{5555)9999}5555\\\phantom{5555)}\underline{\phantom{9999}5555\phantom{}}\\\phantom{5555)99999999}0\\\end{array}
Find closest multiple of 5555 to 5555. We see that 1 \times 5555 = 5555 is the nearest. Now subtract 5555 from 5555 to get reminder 0. Add 1 to quotient.
\text{Quotient: }10001 \text{Reminder: }0
Since 0 is less than 5555, stop the division. The reminder is 0. The topmost line 00010001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 10001.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}