Evaluate
15
Factor
3\times 5
Share
Copied to clipboard
\begin{array}{l}\phantom{37)}\phantom{1}\\37\overline{)555}\\\end{array}
Use the 1^{st} digit 5 from dividend 555
\begin{array}{l}\phantom{37)}0\phantom{2}\\37\overline{)555}\\\end{array}
Since 5 is less than 37, use the next digit 5 from dividend 555 and add 0 to the quotient
\begin{array}{l}\phantom{37)}0\phantom{3}\\37\overline{)555}\\\end{array}
Use the 2^{nd} digit 5 from dividend 555
\begin{array}{l}\phantom{37)}01\phantom{4}\\37\overline{)555}\\\phantom{37)}\underline{\phantom{}37\phantom{9}}\\\phantom{37)}18\\\end{array}
Find closest multiple of 37 to 55. We see that 1 \times 37 = 37 is the nearest. Now subtract 37 from 55 to get reminder 18. Add 1 to quotient.
\begin{array}{l}\phantom{37)}01\phantom{5}\\37\overline{)555}\\\phantom{37)}\underline{\phantom{}37\phantom{9}}\\\phantom{37)}185\\\end{array}
Use the 3^{rd} digit 5 from dividend 555
\begin{array}{l}\phantom{37)}015\phantom{6}\\37\overline{)555}\\\phantom{37)}\underline{\phantom{}37\phantom{9}}\\\phantom{37)}185\\\phantom{37)}\underline{\phantom{}185\phantom{}}\\\phantom{37)999}0\\\end{array}
Find closest multiple of 37 to 185. We see that 5 \times 37 = 185 is the nearest. Now subtract 185 from 185 to get reminder 0. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }0
Since 0 is less than 37, stop the division. The reminder is 0. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}