Evaluate
\frac{5549}{1641}\approx 3.381474711
Factor
\frac{31 \cdot 179}{3 \cdot 547} = 3\frac{626}{1641} = 3.3814747105423524
Share
Copied to clipboard
\begin{array}{l}\phantom{1641)}\phantom{1}\\1641\overline{)5549}\\\end{array}
Use the 1^{st} digit 5 from dividend 5549
\begin{array}{l}\phantom{1641)}0\phantom{2}\\1641\overline{)5549}\\\end{array}
Since 5 is less than 1641, use the next digit 5 from dividend 5549 and add 0 to the quotient
\begin{array}{l}\phantom{1641)}0\phantom{3}\\1641\overline{)5549}\\\end{array}
Use the 2^{nd} digit 5 from dividend 5549
\begin{array}{l}\phantom{1641)}00\phantom{4}\\1641\overline{)5549}\\\end{array}
Since 55 is less than 1641, use the next digit 4 from dividend 5549 and add 0 to the quotient
\begin{array}{l}\phantom{1641)}00\phantom{5}\\1641\overline{)5549}\\\end{array}
Use the 3^{rd} digit 4 from dividend 5549
\begin{array}{l}\phantom{1641)}000\phantom{6}\\1641\overline{)5549}\\\end{array}
Since 554 is less than 1641, use the next digit 9 from dividend 5549 and add 0 to the quotient
\begin{array}{l}\phantom{1641)}000\phantom{7}\\1641\overline{)5549}\\\end{array}
Use the 4^{th} digit 9 from dividend 5549
\begin{array}{l}\phantom{1641)}0003\phantom{8}\\1641\overline{)5549}\\\phantom{1641)}\underline{\phantom{}4923\phantom{}}\\\phantom{1641)9}626\\\end{array}
Find closest multiple of 1641 to 5549. We see that 3 \times 1641 = 4923 is the nearest. Now subtract 4923 from 5549 to get reminder 626. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }626
Since 626 is less than 1641, stop the division. The reminder is 626. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}