Evaluate
\frac{551}{60}\approx 9.183333333
Factor
\frac{19 \cdot 29}{2 ^ {2} \cdot 3 \cdot 5} = 9\frac{11}{60} = 9.183333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)551}\\\end{array}
Use the 1^{st} digit 5 from dividend 551
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)551}\\\end{array}
Since 5 is less than 60, use the next digit 5 from dividend 551 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)551}\\\end{array}
Use the 2^{nd} digit 5 from dividend 551
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)551}\\\end{array}
Since 55 is less than 60, use the next digit 1 from dividend 551 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)551}\\\end{array}
Use the 3^{rd} digit 1 from dividend 551
\begin{array}{l}\phantom{60)}009\phantom{6}\\60\overline{)551}\\\phantom{60)}\underline{\phantom{}540\phantom{}}\\\phantom{60)9}11\\\end{array}
Find closest multiple of 60 to 551. We see that 9 \times 60 = 540 is the nearest. Now subtract 540 from 551 to get reminder 11. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }11
Since 11 is less than 60, stop the division. The reminder is 11. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}