Evaluate
\frac{275}{46}\approx 5.97826087
Factor
\frac{5 ^ {2} \cdot 11}{2 \cdot 23} = 5\frac{45}{46} = 5.978260869565218
Share
Copied to clipboard
\begin{array}{l}\phantom{92)}\phantom{1}\\92\overline{)550}\\\end{array}
Use the 1^{st} digit 5 from dividend 550
\begin{array}{l}\phantom{92)}0\phantom{2}\\92\overline{)550}\\\end{array}
Since 5 is less than 92, use the next digit 5 from dividend 550 and add 0 to the quotient
\begin{array}{l}\phantom{92)}0\phantom{3}\\92\overline{)550}\\\end{array}
Use the 2^{nd} digit 5 from dividend 550
\begin{array}{l}\phantom{92)}00\phantom{4}\\92\overline{)550}\\\end{array}
Since 55 is less than 92, use the next digit 0 from dividend 550 and add 0 to the quotient
\begin{array}{l}\phantom{92)}00\phantom{5}\\92\overline{)550}\\\end{array}
Use the 3^{rd} digit 0 from dividend 550
\begin{array}{l}\phantom{92)}005\phantom{6}\\92\overline{)550}\\\phantom{92)}\underline{\phantom{}460\phantom{}}\\\phantom{92)9}90\\\end{array}
Find closest multiple of 92 to 550. We see that 5 \times 92 = 460 is the nearest. Now subtract 460 from 550 to get reminder 90. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }90
Since 90 is less than 92, stop the division. The reminder is 90. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}