Evaluate
\frac{550}{47}\approx 11.70212766
Factor
\frac{2 \cdot 5 ^ {2} \cdot 11}{47} = 11\frac{33}{47} = 11.702127659574469
Share
Copied to clipboard
\begin{array}{l}\phantom{47)}\phantom{1}\\47\overline{)550}\\\end{array}
Use the 1^{st} digit 5 from dividend 550
\begin{array}{l}\phantom{47)}0\phantom{2}\\47\overline{)550}\\\end{array}
Since 5 is less than 47, use the next digit 5 from dividend 550 and add 0 to the quotient
\begin{array}{l}\phantom{47)}0\phantom{3}\\47\overline{)550}\\\end{array}
Use the 2^{nd} digit 5 from dividend 550
\begin{array}{l}\phantom{47)}01\phantom{4}\\47\overline{)550}\\\phantom{47)}\underline{\phantom{}47\phantom{9}}\\\phantom{47)9}8\\\end{array}
Find closest multiple of 47 to 55. We see that 1 \times 47 = 47 is the nearest. Now subtract 47 from 55 to get reminder 8. Add 1 to quotient.
\begin{array}{l}\phantom{47)}01\phantom{5}\\47\overline{)550}\\\phantom{47)}\underline{\phantom{}47\phantom{9}}\\\phantom{47)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 550
\begin{array}{l}\phantom{47)}011\phantom{6}\\47\overline{)550}\\\phantom{47)}\underline{\phantom{}47\phantom{9}}\\\phantom{47)9}80\\\phantom{47)}\underline{\phantom{9}47\phantom{}}\\\phantom{47)9}33\\\end{array}
Find closest multiple of 47 to 80. We see that 1 \times 47 = 47 is the nearest. Now subtract 47 from 80 to get reminder 33. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }33
Since 33 is less than 47, stop the division. The reminder is 33. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}