Evaluate
\frac{1371593}{7758}\approx 176.797241557
Factor
\frac{1371593}{2 \cdot 3 ^ {2} \cdot 431} = 176\frac{6185}{7758} = 176.79724155710235
Share
Copied to clipboard
\begin{array}{l}\phantom{31032)}\phantom{1}\\31032\overline{)5486372}\\\end{array}
Use the 1^{st} digit 5 from dividend 5486372
\begin{array}{l}\phantom{31032)}0\phantom{2}\\31032\overline{)5486372}\\\end{array}
Since 5 is less than 31032, use the next digit 4 from dividend 5486372 and add 0 to the quotient
\begin{array}{l}\phantom{31032)}0\phantom{3}\\31032\overline{)5486372}\\\end{array}
Use the 2^{nd} digit 4 from dividend 5486372
\begin{array}{l}\phantom{31032)}00\phantom{4}\\31032\overline{)5486372}\\\end{array}
Since 54 is less than 31032, use the next digit 8 from dividend 5486372 and add 0 to the quotient
\begin{array}{l}\phantom{31032)}00\phantom{5}\\31032\overline{)5486372}\\\end{array}
Use the 3^{rd} digit 8 from dividend 5486372
\begin{array}{l}\phantom{31032)}000\phantom{6}\\31032\overline{)5486372}\\\end{array}
Since 548 is less than 31032, use the next digit 6 from dividend 5486372 and add 0 to the quotient
\begin{array}{l}\phantom{31032)}000\phantom{7}\\31032\overline{)5486372}\\\end{array}
Use the 4^{th} digit 6 from dividend 5486372
\begin{array}{l}\phantom{31032)}0000\phantom{8}\\31032\overline{)5486372}\\\end{array}
Since 5486 is less than 31032, use the next digit 3 from dividend 5486372 and add 0 to the quotient
\begin{array}{l}\phantom{31032)}0000\phantom{9}\\31032\overline{)5486372}\\\end{array}
Use the 5^{th} digit 3 from dividend 5486372
\begin{array}{l}\phantom{31032)}00001\phantom{10}\\31032\overline{)5486372}\\\phantom{31032)}\underline{\phantom{}31032\phantom{99}}\\\phantom{31032)}23831\\\end{array}
Find closest multiple of 31032 to 54863. We see that 1 \times 31032 = 31032 is the nearest. Now subtract 31032 from 54863 to get reminder 23831. Add 1 to quotient.
\begin{array}{l}\phantom{31032)}00001\phantom{11}\\31032\overline{)5486372}\\\phantom{31032)}\underline{\phantom{}31032\phantom{99}}\\\phantom{31032)}238317\\\end{array}
Use the 6^{th} digit 7 from dividend 5486372
\begin{array}{l}\phantom{31032)}000017\phantom{12}\\31032\overline{)5486372}\\\phantom{31032)}\underline{\phantom{}31032\phantom{99}}\\\phantom{31032)}238317\\\phantom{31032)}\underline{\phantom{}217224\phantom{9}}\\\phantom{31032)9}21093\\\end{array}
Find closest multiple of 31032 to 238317. We see that 7 \times 31032 = 217224 is the nearest. Now subtract 217224 from 238317 to get reminder 21093. Add 7 to quotient.
\begin{array}{l}\phantom{31032)}000017\phantom{13}\\31032\overline{)5486372}\\\phantom{31032)}\underline{\phantom{}31032\phantom{99}}\\\phantom{31032)}238317\\\phantom{31032)}\underline{\phantom{}217224\phantom{9}}\\\phantom{31032)9}210932\\\end{array}
Use the 7^{th} digit 2 from dividend 5486372
\begin{array}{l}\phantom{31032)}0000176\phantom{14}\\31032\overline{)5486372}\\\phantom{31032)}\underline{\phantom{}31032\phantom{99}}\\\phantom{31032)}238317\\\phantom{31032)}\underline{\phantom{}217224\phantom{9}}\\\phantom{31032)9}210932\\\phantom{31032)}\underline{\phantom{9}186192\phantom{}}\\\phantom{31032)99}24740\\\end{array}
Find closest multiple of 31032 to 210932. We see that 6 \times 31032 = 186192 is the nearest. Now subtract 186192 from 210932 to get reminder 24740. Add 6 to quotient.
\text{Quotient: }176 \text{Reminder: }24740
Since 24740 is less than 31032, stop the division. The reminder is 24740. The topmost line 0000176 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 176.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}