Evaluate
3651
Factor
3\times 1217
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)54765}\\\end{array}
Use the 1^{st} digit 5 from dividend 54765
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)54765}\\\end{array}
Since 5 is less than 15, use the next digit 4 from dividend 54765 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)54765}\\\end{array}
Use the 2^{nd} digit 4 from dividend 54765
\begin{array}{l}\phantom{15)}03\phantom{4}\\15\overline{)54765}\\\phantom{15)}\underline{\phantom{}45\phantom{999}}\\\phantom{15)9}9\\\end{array}
Find closest multiple of 15 to 54. We see that 3 \times 15 = 45 is the nearest. Now subtract 45 from 54 to get reminder 9. Add 3 to quotient.
\begin{array}{l}\phantom{15)}03\phantom{5}\\15\overline{)54765}\\\phantom{15)}\underline{\phantom{}45\phantom{999}}\\\phantom{15)9}97\\\end{array}
Use the 3^{rd} digit 7 from dividend 54765
\begin{array}{l}\phantom{15)}036\phantom{6}\\15\overline{)54765}\\\phantom{15)}\underline{\phantom{}45\phantom{999}}\\\phantom{15)9}97\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)99}7\\\end{array}
Find closest multiple of 15 to 97. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 97 to get reminder 7. Add 6 to quotient.
\begin{array}{l}\phantom{15)}036\phantom{7}\\15\overline{)54765}\\\phantom{15)}\underline{\phantom{}45\phantom{999}}\\\phantom{15)9}97\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)99}76\\\end{array}
Use the 4^{th} digit 6 from dividend 54765
\begin{array}{l}\phantom{15)}0365\phantom{8}\\15\overline{)54765}\\\phantom{15)}\underline{\phantom{}45\phantom{999}}\\\phantom{15)9}97\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)99}76\\\phantom{15)}\underline{\phantom{99}75\phantom{9}}\\\phantom{15)999}1\\\end{array}
Find closest multiple of 15 to 76. We see that 5 \times 15 = 75 is the nearest. Now subtract 75 from 76 to get reminder 1. Add 5 to quotient.
\begin{array}{l}\phantom{15)}0365\phantom{9}\\15\overline{)54765}\\\phantom{15)}\underline{\phantom{}45\phantom{999}}\\\phantom{15)9}97\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)99}76\\\phantom{15)}\underline{\phantom{99}75\phantom{9}}\\\phantom{15)999}15\\\end{array}
Use the 5^{th} digit 5 from dividend 54765
\begin{array}{l}\phantom{15)}03651\phantom{10}\\15\overline{)54765}\\\phantom{15)}\underline{\phantom{}45\phantom{999}}\\\phantom{15)9}97\\\phantom{15)}\underline{\phantom{9}90\phantom{99}}\\\phantom{15)99}76\\\phantom{15)}\underline{\phantom{99}75\phantom{9}}\\\phantom{15)999}15\\\phantom{15)}\underline{\phantom{999}15\phantom{}}\\\phantom{15)99999}0\\\end{array}
Find closest multiple of 15 to 15. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 15 to get reminder 0. Add 1 to quotient.
\text{Quotient: }3651 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 03651 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3651.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}