Solve for x
x = \frac{15279}{215} = 71\frac{14}{215} \approx 71.065116279
Graph
Share
Copied to clipboard
-43x=2419.2-5475
Subtract 5475 from both sides.
-43x=-3055.8
Subtract 5475 from 2419.2 to get -3055.8.
x=\frac{-3055.8}{-43}
Divide both sides by -43.
x=\frac{-30558}{-430}
Expand \frac{-3055.8}{-43} by multiplying both numerator and the denominator by 10.
x=\frac{15279}{215}
Reduce the fraction \frac{-30558}{-430} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}