Evaluate
\frac{148257}{40960}=3.619555664
Factor
\frac{3 ^ {3} \cdot 17 ^ {2} \cdot 19}{2 ^ {13} \cdot 5} = 3\frac{25377}{40960} = 3.6195556640625
Share
Copied to clipboard
\frac{\frac{\frac{5472\times 3468\times 24}{8}}{1024}}{1024\times 15}
Express \frac{\frac{\frac{\frac{5472\times 3468\times 24}{8}}{1024}}{1024}}{15} as a single fraction.
\frac{\frac{5472\times 3468\times 24}{8\times 1024}}{1024\times 15}
Express \frac{\frac{5472\times 3468\times 24}{8}}{1024} as a single fraction.
\frac{\frac{3\times 171\times 867}{8}}{1024\times 15}
Cancel out 4\times 4\times 8\times 8 in both numerator and denominator.
\frac{\frac{513\times 867}{8}}{1024\times 15}
Multiply 3 and 171 to get 513.
\frac{\frac{444771}{8}}{1024\times 15}
Multiply 513 and 867 to get 444771.
\frac{\frac{444771}{8}}{15360}
Multiply 1024 and 15 to get 15360.
\frac{444771}{8\times 15360}
Express \frac{\frac{444771}{8}}{15360} as a single fraction.
\frac{444771}{122880}
Multiply 8 and 15360 to get 122880.
\frac{148257}{40960}
Reduce the fraction \frac{444771}{122880} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}