Evaluate
1
Factor
1
Share
Copied to clipboard
\begin{array}{l}\phantom{54231)}\phantom{1}\\54231\overline{)54231}\\\end{array}
Use the 1^{st} digit 5 from dividend 54231
\begin{array}{l}\phantom{54231)}0\phantom{2}\\54231\overline{)54231}\\\end{array}
Since 5 is less than 54231, use the next digit 4 from dividend 54231 and add 0 to the quotient
\begin{array}{l}\phantom{54231)}0\phantom{3}\\54231\overline{)54231}\\\end{array}
Use the 2^{nd} digit 4 from dividend 54231
\begin{array}{l}\phantom{54231)}00\phantom{4}\\54231\overline{)54231}\\\end{array}
Since 54 is less than 54231, use the next digit 2 from dividend 54231 and add 0 to the quotient
\begin{array}{l}\phantom{54231)}00\phantom{5}\\54231\overline{)54231}\\\end{array}
Use the 3^{rd} digit 2 from dividend 54231
\begin{array}{l}\phantom{54231)}000\phantom{6}\\54231\overline{)54231}\\\end{array}
Since 542 is less than 54231, use the next digit 3 from dividend 54231 and add 0 to the quotient
\begin{array}{l}\phantom{54231)}000\phantom{7}\\54231\overline{)54231}\\\end{array}
Use the 4^{th} digit 3 from dividend 54231
\begin{array}{l}\phantom{54231)}0000\phantom{8}\\54231\overline{)54231}\\\end{array}
Since 5423 is less than 54231, use the next digit 1 from dividend 54231 and add 0 to the quotient
\begin{array}{l}\phantom{54231)}0000\phantom{9}\\54231\overline{)54231}\\\end{array}
Use the 5^{th} digit 1 from dividend 54231
\begin{array}{l}\phantom{54231)}00001\phantom{10}\\54231\overline{)54231}\\\phantom{54231)}\underline{\phantom{}54231\phantom{}}\\\phantom{54231)99999}0\\\end{array}
Find closest multiple of 54231 to 54231. We see that 1 \times 54231 = 54231 is the nearest. Now subtract 54231 from 54231 to get reminder 0. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }0
Since 0 is less than 54231, stop the division. The reminder is 0. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}