Evaluate
\frac{542}{17}\approx 31.882352941
Factor
\frac{2 \cdot 271}{17} = 31\frac{15}{17} = 31.88235294117647
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)542}\\\end{array}
Use the 1^{st} digit 5 from dividend 542
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)542}\\\end{array}
Since 5 is less than 17, use the next digit 4 from dividend 542 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)542}\\\end{array}
Use the 2^{nd} digit 4 from dividend 542
\begin{array}{l}\phantom{17)}03\phantom{4}\\17\overline{)542}\\\phantom{17)}\underline{\phantom{}51\phantom{9}}\\\phantom{17)9}3\\\end{array}
Find closest multiple of 17 to 54. We see that 3 \times 17 = 51 is the nearest. Now subtract 51 from 54 to get reminder 3. Add 3 to quotient.
\begin{array}{l}\phantom{17)}03\phantom{5}\\17\overline{)542}\\\phantom{17)}\underline{\phantom{}51\phantom{9}}\\\phantom{17)9}32\\\end{array}
Use the 3^{rd} digit 2 from dividend 542
\begin{array}{l}\phantom{17)}031\phantom{6}\\17\overline{)542}\\\phantom{17)}\underline{\phantom{}51\phantom{9}}\\\phantom{17)9}32\\\phantom{17)}\underline{\phantom{9}17\phantom{}}\\\phantom{17)9}15\\\end{array}
Find closest multiple of 17 to 32. We see that 1 \times 17 = 17 is the nearest. Now subtract 17 from 32 to get reminder 15. Add 1 to quotient.
\text{Quotient: }31 \text{Reminder: }15
Since 15 is less than 17, stop the division. The reminder is 15. The topmost line 031 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}