Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

18\left(3x-2x^{2}\right)
Factor out 18.
x\left(3-2x\right)
Consider 3x-2x^{2}. Factor out x.
18x\left(-2x+3\right)
Rewrite the complete factored expression.
-36x^{2}+54x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-54±\sqrt{54^{2}}}{2\left(-36\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-54±54}{2\left(-36\right)}
Take the square root of 54^{2}.
x=\frac{-54±54}{-72}
Multiply 2 times -36.
x=\frac{0}{-72}
Now solve the equation x=\frac{-54±54}{-72} when ± is plus. Add -54 to 54.
x=0
Divide 0 by -72.
x=-\frac{108}{-72}
Now solve the equation x=\frac{-54±54}{-72} when ± is minus. Subtract 54 from -54.
x=\frac{3}{2}
Reduce the fraction \frac{-108}{-72} to lowest terms by extracting and canceling out 36.
-36x^{2}+54x=-36x\left(x-\frac{3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{3}{2} for x_{2}.
-36x^{2}+54x=-36x\times \frac{-2x+3}{-2}
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-36x^{2}+54x=18x\left(-2x+3\right)
Cancel out 2, the greatest common factor in -36 and -2.