Factor
2\left(3x-2\right)\left(2x+a\right)\left(\frac{9x^{2}}{2}+3x+2\right)
Evaluate
54x^{4}+27ax^{3}-16x-8a
Graph
Share
Copied to clipboard
54x^{4}+27ax^{3}-16x-8a
Consider 54x^{4}+27x^{3}a-16x-8a as a polynomial over variable x.
\left(6x-4\right)\left(9x^{3}+\frac{9ax^{2}}{2}+6x^{2}+3ax+4x+2a\right)
Find one factor of the form kx^{m}+n, where kx^{m} divides the monomial with the highest power 54x^{4} and n divides the constant factor -8a. One such factor is 6x-4. Factor the polynomial by dividing it by this factor.
2\left(3x-2\right)
Consider 6x-4. Factor out 2.
\frac{9x^{2}}{2}\left(2x+a\right)+3x\left(2x+a\right)+2\left(2x+a\right)
Consider 9x^{3}+\frac{9}{2}ax^{2}+6x^{2}+3ax+4x+2a. Do the grouping 9x^{3}+\frac{9ax^{2}}{2}+6x^{2}+3ax+4x+2a=\left(9x^{3}+\frac{9ax^{2}}{2}\right)+\left(6x^{2}+3ax\right)+\left(4x+2a\right), and factor out \frac{9x^{2}}{2},3x,2 in each of the groups respectively.
\left(2x+a\right)\left(\frac{9x^{2}}{2}+3x+2\right)
Factor out common term 2x+a by using distributive property.
\left(3x-2\right)\left(9x^{2}+6x+4\right)\left(2x+a\right)
Rewrite the complete factored expression. Simplify. Polynomial 9x^{2}+6x+4 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}