Evaluate
36b^{6}\left(ac\right)^{4}
Differentiate w.r.t. a
144a^{3}c^{4}b^{6}
Share
Copied to clipboard
\frac{\frac{54a^{6}b^{5}c^{2}b}{a^{2}c}}{\sqrt[3]{\frac{3\times 8+3}{8}}}c^{3}
Divide 54a^{6}b^{5}c^{2} by \frac{a^{2}c}{b} by multiplying 54a^{6}b^{5}c^{2} by the reciprocal of \frac{a^{2}c}{b}.
\frac{54bca^{4}b^{5}}{\sqrt[3]{\frac{3\times 8+3}{8}}}c^{3}
Cancel out ca^{2} in both numerator and denominator.
\frac{54b^{6}ca^{4}}{\sqrt[3]{\frac{3\times 8+3}{8}}}c^{3}
To multiply powers of the same base, add their exponents. Add 1 and 5 to get 6.
\frac{54b^{6}ca^{4}}{\sqrt[3]{\frac{24+3}{8}}}c^{3}
Multiply 3 and 8 to get 24.
\frac{54b^{6}ca^{4}}{\sqrt[3]{\frac{27}{8}}}c^{3}
Add 24 and 3 to get 27.
\frac{54b^{6}ca^{4}}{\frac{3}{2}}c^{3}
Calculate \sqrt[3]{\frac{27}{8}} and get \frac{3}{2}.
\frac{54b^{6}ca^{4}\times 2}{3}c^{3}
Divide 54b^{6}ca^{4} by \frac{3}{2} by multiplying 54b^{6}ca^{4} by the reciprocal of \frac{3}{2}.
\frac{108b^{6}ca^{4}}{3}c^{3}
Multiply 54 and 2 to get 108.
36b^{6}ca^{4}c^{3}
Divide 108b^{6}ca^{4} by 3 to get 36b^{6}ca^{4}.
36b^{6}c^{4}a^{4}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}