Solve for x
x=-\frac{17}{18}\approx -0.944444444
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
a+b=-21 ab=54\left(-68\right)=-3672
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 54x^{2}+ax+bx-68. To find a and b, set up a system to be solved.
1,-3672 2,-1836 3,-1224 4,-918 6,-612 8,-459 9,-408 12,-306 17,-216 18,-204 24,-153 27,-136 34,-108 36,-102 51,-72 54,-68
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -3672.
1-3672=-3671 2-1836=-1834 3-1224=-1221 4-918=-914 6-612=-606 8-459=-451 9-408=-399 12-306=-294 17-216=-199 18-204=-186 24-153=-129 27-136=-109 34-108=-74 36-102=-66 51-72=-21 54-68=-14
Calculate the sum for each pair.
a=-72 b=51
The solution is the pair that gives sum -21.
\left(54x^{2}-72x\right)+\left(51x-68\right)
Rewrite 54x^{2}-21x-68 as \left(54x^{2}-72x\right)+\left(51x-68\right).
18x\left(3x-4\right)+17\left(3x-4\right)
Factor out 18x in the first and 17 in the second group.
\left(3x-4\right)\left(18x+17\right)
Factor out common term 3x-4 by using distributive property.
x=\frac{4}{3} x=-\frac{17}{18}
To find equation solutions, solve 3x-4=0 and 18x+17=0.
54x^{2}-21x-68=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 54\left(-68\right)}}{2\times 54}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 54 for a, -21 for b, and -68 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 54\left(-68\right)}}{2\times 54}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-216\left(-68\right)}}{2\times 54}
Multiply -4 times 54.
x=\frac{-\left(-21\right)±\sqrt{441+14688}}{2\times 54}
Multiply -216 times -68.
x=\frac{-\left(-21\right)±\sqrt{15129}}{2\times 54}
Add 441 to 14688.
x=\frac{-\left(-21\right)±123}{2\times 54}
Take the square root of 15129.
x=\frac{21±123}{2\times 54}
The opposite of -21 is 21.
x=\frac{21±123}{108}
Multiply 2 times 54.
x=\frac{144}{108}
Now solve the equation x=\frac{21±123}{108} when ± is plus. Add 21 to 123.
x=\frac{4}{3}
Reduce the fraction \frac{144}{108} to lowest terms by extracting and canceling out 36.
x=-\frac{102}{108}
Now solve the equation x=\frac{21±123}{108} when ± is minus. Subtract 123 from 21.
x=-\frac{17}{18}
Reduce the fraction \frac{-102}{108} to lowest terms by extracting and canceling out 6.
x=\frac{4}{3} x=-\frac{17}{18}
The equation is now solved.
54x^{2}-21x-68=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
54x^{2}-21x-68-\left(-68\right)=-\left(-68\right)
Add 68 to both sides of the equation.
54x^{2}-21x=-\left(-68\right)
Subtracting -68 from itself leaves 0.
54x^{2}-21x=68
Subtract -68 from 0.
\frac{54x^{2}-21x}{54}=\frac{68}{54}
Divide both sides by 54.
x^{2}+\left(-\frac{21}{54}\right)x=\frac{68}{54}
Dividing by 54 undoes the multiplication by 54.
x^{2}-\frac{7}{18}x=\frac{68}{54}
Reduce the fraction \frac{-21}{54} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{7}{18}x=\frac{34}{27}
Reduce the fraction \frac{68}{54} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{18}x+\left(-\frac{7}{36}\right)^{2}=\frac{34}{27}+\left(-\frac{7}{36}\right)^{2}
Divide -\frac{7}{18}, the coefficient of the x term, by 2 to get -\frac{7}{36}. Then add the square of -\frac{7}{36} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{18}x+\frac{49}{1296}=\frac{34}{27}+\frac{49}{1296}
Square -\frac{7}{36} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{18}x+\frac{49}{1296}=\frac{1681}{1296}
Add \frac{34}{27} to \frac{49}{1296} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{36}\right)^{2}=\frac{1681}{1296}
Factor x^{2}-\frac{7}{18}x+\frac{49}{1296}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{36}\right)^{2}}=\sqrt{\frac{1681}{1296}}
Take the square root of both sides of the equation.
x-\frac{7}{36}=\frac{41}{36} x-\frac{7}{36}=-\frac{41}{36}
Simplify.
x=\frac{4}{3} x=-\frac{17}{18}
Add \frac{7}{36} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}