Factor
54\left(x-\frac{-\sqrt{655}-13}{18}\right)\left(x-\frac{\sqrt{655}-13}{18}\right)
Evaluate
54x^{2}+78x-81
Graph
Share
Copied to clipboard
54x^{2}+78x-81=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-78±\sqrt{78^{2}-4\times 54\left(-81\right)}}{2\times 54}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-78±\sqrt{6084-4\times 54\left(-81\right)}}{2\times 54}
Square 78.
x=\frac{-78±\sqrt{6084-216\left(-81\right)}}{2\times 54}
Multiply -4 times 54.
x=\frac{-78±\sqrt{6084+17496}}{2\times 54}
Multiply -216 times -81.
x=\frac{-78±\sqrt{23580}}{2\times 54}
Add 6084 to 17496.
x=\frac{-78±6\sqrt{655}}{2\times 54}
Take the square root of 23580.
x=\frac{-78±6\sqrt{655}}{108}
Multiply 2 times 54.
x=\frac{6\sqrt{655}-78}{108}
Now solve the equation x=\frac{-78±6\sqrt{655}}{108} when ± is plus. Add -78 to 6\sqrt{655}.
x=\frac{\sqrt{655}-13}{18}
Divide -78+6\sqrt{655} by 108.
x=\frac{-6\sqrt{655}-78}{108}
Now solve the equation x=\frac{-78±6\sqrt{655}}{108} when ± is minus. Subtract 6\sqrt{655} from -78.
x=\frac{-\sqrt{655}-13}{18}
Divide -78-6\sqrt{655} by 108.
54x^{2}+78x-81=54\left(x-\frac{\sqrt{655}-13}{18}\right)\left(x-\frac{-\sqrt{655}-13}{18}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-13+\sqrt{655}}{18} for x_{1} and \frac{-13-\sqrt{655}}{18} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}