Solve for x
x=3
x=-3
Graph
Share
Copied to clipboard
54=6xx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
54=6x^{2}
Multiply x and x to get x^{2}.
6x^{2}=54
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{54}{6}
Divide both sides by 6.
x^{2}=9
Divide 54 by 6 to get 9.
x=3 x=-3
Take the square root of both sides of the equation.
54=6xx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
54=6x^{2}
Multiply x and x to get x^{2}.
6x^{2}=54
Swap sides so that all variable terms are on the left hand side.
6x^{2}-54=0
Subtract 54 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-54\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 0 for b, and -54 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-54\right)}}{2\times 6}
Square 0.
x=\frac{0±\sqrt{-24\left(-54\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{0±\sqrt{1296}}{2\times 6}
Multiply -24 times -54.
x=\frac{0±36}{2\times 6}
Take the square root of 1296.
x=\frac{0±36}{12}
Multiply 2 times 6.
x=3
Now solve the equation x=\frac{0±36}{12} when ± is plus. Divide 36 by 12.
x=-3
Now solve the equation x=\frac{0±36}{12} when ± is minus. Divide -36 by 12.
x=3 x=-3
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}