Evaluate
\frac{89}{7}\approx 12.714285714
Factor
\frac{89}{7} = 12\frac{5}{7} = 12.714285714285714
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)534}\\\end{array}
Use the 1^{st} digit 5 from dividend 534
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)534}\\\end{array}
Since 5 is less than 42, use the next digit 3 from dividend 534 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)534}\\\end{array}
Use the 2^{nd} digit 3 from dividend 534
\begin{array}{l}\phantom{42)}01\phantom{4}\\42\overline{)534}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)}11\\\end{array}
Find closest multiple of 42 to 53. We see that 1 \times 42 = 42 is the nearest. Now subtract 42 from 53 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{42)}01\phantom{5}\\42\overline{)534}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)}114\\\end{array}
Use the 3^{rd} digit 4 from dividend 534
\begin{array}{l}\phantom{42)}012\phantom{6}\\42\overline{)534}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)}114\\\phantom{42)}\underline{\phantom{9}84\phantom{}}\\\phantom{42)9}30\\\end{array}
Find closest multiple of 42 to 114. We see that 2 \times 42 = 84 is the nearest. Now subtract 84 from 114 to get reminder 30. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }30
Since 30 is less than 42, stop the division. The reminder is 30. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}