Evaluate
\frac{213}{200}=1.065
Factor
\frac{3 \cdot 71}{2 ^ {3} \cdot 5 ^ {2}} = 1\frac{13}{200} = 1.065
Share
Copied to clipboard
\begin{array}{l}\phantom{5000)}\phantom{1}\\5000\overline{)5325}\\\end{array}
Use the 1^{st} digit 5 from dividend 5325
\begin{array}{l}\phantom{5000)}0\phantom{2}\\5000\overline{)5325}\\\end{array}
Since 5 is less than 5000, use the next digit 3 from dividend 5325 and add 0 to the quotient
\begin{array}{l}\phantom{5000)}0\phantom{3}\\5000\overline{)5325}\\\end{array}
Use the 2^{nd} digit 3 from dividend 5325
\begin{array}{l}\phantom{5000)}00\phantom{4}\\5000\overline{)5325}\\\end{array}
Since 53 is less than 5000, use the next digit 2 from dividend 5325 and add 0 to the quotient
\begin{array}{l}\phantom{5000)}00\phantom{5}\\5000\overline{)5325}\\\end{array}
Use the 3^{rd} digit 2 from dividend 5325
\begin{array}{l}\phantom{5000)}000\phantom{6}\\5000\overline{)5325}\\\end{array}
Since 532 is less than 5000, use the next digit 5 from dividend 5325 and add 0 to the quotient
\begin{array}{l}\phantom{5000)}000\phantom{7}\\5000\overline{)5325}\\\end{array}
Use the 4^{th} digit 5 from dividend 5325
\begin{array}{l}\phantom{5000)}0001\phantom{8}\\5000\overline{)5325}\\\phantom{5000)}\underline{\phantom{}5000\phantom{}}\\\phantom{5000)9}325\\\end{array}
Find closest multiple of 5000 to 5325. We see that 1 \times 5000 = 5000 is the nearest. Now subtract 5000 from 5325 to get reminder 325. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }325
Since 325 is less than 5000, stop the division. The reminder is 325. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}