Evaluate
19
Factor
19
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)532}\\\end{array}
Use the 1^{st} digit 5 from dividend 532
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)532}\\\end{array}
Since 5 is less than 28, use the next digit 3 from dividend 532 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)532}\\\end{array}
Use the 2^{nd} digit 3 from dividend 532
\begin{array}{l}\phantom{28)}01\phantom{4}\\28\overline{)532}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}25\\\end{array}
Find closest multiple of 28 to 53. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 53 to get reminder 25. Add 1 to quotient.
\begin{array}{l}\phantom{28)}01\phantom{5}\\28\overline{)532}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}252\\\end{array}
Use the 3^{rd} digit 2 from dividend 532
\begin{array}{l}\phantom{28)}019\phantom{6}\\28\overline{)532}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}252\\\phantom{28)}\underline{\phantom{}252\phantom{}}\\\phantom{28)999}0\\\end{array}
Find closest multiple of 28 to 252. We see that 9 \times 28 = 252 is the nearest. Now subtract 252 from 252 to get reminder 0. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }0
Since 0 is less than 28, stop the division. The reminder is 0. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}