Evaluate
\frac{523}{24}\approx 21.791666667
Factor
\frac{523}{2 ^ {3} \cdot 3} = 21\frac{19}{24} = 21.791666666666668
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)523}\\\end{array}
Use the 1^{st} digit 5 from dividend 523
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)523}\\\end{array}
Since 5 is less than 24, use the next digit 2 from dividend 523 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)523}\\\end{array}
Use the 2^{nd} digit 2 from dividend 523
\begin{array}{l}\phantom{24)}02\phantom{4}\\24\overline{)523}\\\phantom{24)}\underline{\phantom{}48\phantom{9}}\\\phantom{24)9}4\\\end{array}
Find closest multiple of 24 to 52. We see that 2 \times 24 = 48 is the nearest. Now subtract 48 from 52 to get reminder 4. Add 2 to quotient.
\begin{array}{l}\phantom{24)}02\phantom{5}\\24\overline{)523}\\\phantom{24)}\underline{\phantom{}48\phantom{9}}\\\phantom{24)9}43\\\end{array}
Use the 3^{rd} digit 3 from dividend 523
\begin{array}{l}\phantom{24)}021\phantom{6}\\24\overline{)523}\\\phantom{24)}\underline{\phantom{}48\phantom{9}}\\\phantom{24)9}43\\\phantom{24)}\underline{\phantom{9}24\phantom{}}\\\phantom{24)9}19\\\end{array}
Find closest multiple of 24 to 43. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 43 to get reminder 19. Add 1 to quotient.
\text{Quotient: }21 \text{Reminder: }19
Since 19 is less than 24, stop the division. The reminder is 19. The topmost line 021 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}