Evaluate
\frac{523}{19}\approx 27.526315789
Factor
\frac{523}{19} = 27\frac{10}{19} = 27.526315789473685
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)523}\\\end{array}
Use the 1^{st} digit 5 from dividend 523
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)523}\\\end{array}
Since 5 is less than 19, use the next digit 2 from dividend 523 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)523}\\\end{array}
Use the 2^{nd} digit 2 from dividend 523
\begin{array}{l}\phantom{19)}02\phantom{4}\\19\overline{)523}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)}14\\\end{array}
Find closest multiple of 19 to 52. We see that 2 \times 19 = 38 is the nearest. Now subtract 38 from 52 to get reminder 14. Add 2 to quotient.
\begin{array}{l}\phantom{19)}02\phantom{5}\\19\overline{)523}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)}143\\\end{array}
Use the 3^{rd} digit 3 from dividend 523
\begin{array}{l}\phantom{19)}027\phantom{6}\\19\overline{)523}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)}143\\\phantom{19)}\underline{\phantom{}133\phantom{}}\\\phantom{19)9}10\\\end{array}
Find closest multiple of 19 to 143. We see that 7 \times 19 = 133 is the nearest. Now subtract 133 from 143 to get reminder 10. Add 7 to quotient.
\text{Quotient: }27 \text{Reminder: }10
Since 10 is less than 19, stop the division. The reminder is 10. The topmost line 027 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}