Evaluate
\frac{260}{63}\approx 4.126984127
Factor
\frac{2 ^ {2} \cdot 5 \cdot 13}{3 ^ {2} \cdot 7} = 4\frac{8}{63} = 4.126984126984127
Share
Copied to clipboard
\begin{array}{l}\phantom{126)}\phantom{1}\\126\overline{)520}\\\end{array}
Use the 1^{st} digit 5 from dividend 520
\begin{array}{l}\phantom{126)}0\phantom{2}\\126\overline{)520}\\\end{array}
Since 5 is less than 126, use the next digit 2 from dividend 520 and add 0 to the quotient
\begin{array}{l}\phantom{126)}0\phantom{3}\\126\overline{)520}\\\end{array}
Use the 2^{nd} digit 2 from dividend 520
\begin{array}{l}\phantom{126)}00\phantom{4}\\126\overline{)520}\\\end{array}
Since 52 is less than 126, use the next digit 0 from dividend 520 and add 0 to the quotient
\begin{array}{l}\phantom{126)}00\phantom{5}\\126\overline{)520}\\\end{array}
Use the 3^{rd} digit 0 from dividend 520
\begin{array}{l}\phantom{126)}004\phantom{6}\\126\overline{)520}\\\phantom{126)}\underline{\phantom{}504\phantom{}}\\\phantom{126)9}16\\\end{array}
Find closest multiple of 126 to 520. We see that 4 \times 126 = 504 is the nearest. Now subtract 504 from 520 to get reminder 16. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }16
Since 16 is less than 126, stop the division. The reminder is 16. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}