Evaluate
\frac{519}{128}=4.0546875
Factor
\frac{3 \cdot 173}{2 ^ {7}} = 4\frac{7}{128} = 4.0546875
Share
Copied to clipboard
\begin{array}{l}\phantom{128)}\phantom{1}\\128\overline{)519}\\\end{array}
Use the 1^{st} digit 5 from dividend 519
\begin{array}{l}\phantom{128)}0\phantom{2}\\128\overline{)519}\\\end{array}
Since 5 is less than 128, use the next digit 1 from dividend 519 and add 0 to the quotient
\begin{array}{l}\phantom{128)}0\phantom{3}\\128\overline{)519}\\\end{array}
Use the 2^{nd} digit 1 from dividend 519
\begin{array}{l}\phantom{128)}00\phantom{4}\\128\overline{)519}\\\end{array}
Since 51 is less than 128, use the next digit 9 from dividend 519 and add 0 to the quotient
\begin{array}{l}\phantom{128)}00\phantom{5}\\128\overline{)519}\\\end{array}
Use the 3^{rd} digit 9 from dividend 519
\begin{array}{l}\phantom{128)}004\phantom{6}\\128\overline{)519}\\\phantom{128)}\underline{\phantom{}512\phantom{}}\\\phantom{128)99}7\\\end{array}
Find closest multiple of 128 to 519. We see that 4 \times 128 = 512 is the nearest. Now subtract 512 from 519 to get reminder 7. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }7
Since 7 is less than 128, stop the division. The reminder is 7. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}