Evaluate
\frac{518400}{361}\approx 1436.011080332
Factor
\frac{2 ^ {8} \cdot 3 ^ {4} \cdot 5 ^ {2}}{19 ^ {2}} = 1436\frac{4}{361} = 1436.01108033241
Share
Copied to clipboard
\begin{array}{l}\phantom{361)}\phantom{1}\\361\overline{)518400}\\\end{array}
Use the 1^{st} digit 5 from dividend 518400
\begin{array}{l}\phantom{361)}0\phantom{2}\\361\overline{)518400}\\\end{array}
Since 5 is less than 361, use the next digit 1 from dividend 518400 and add 0 to the quotient
\begin{array}{l}\phantom{361)}0\phantom{3}\\361\overline{)518400}\\\end{array}
Use the 2^{nd} digit 1 from dividend 518400
\begin{array}{l}\phantom{361)}00\phantom{4}\\361\overline{)518400}\\\end{array}
Since 51 is less than 361, use the next digit 8 from dividend 518400 and add 0 to the quotient
\begin{array}{l}\phantom{361)}00\phantom{5}\\361\overline{)518400}\\\end{array}
Use the 3^{rd} digit 8 from dividend 518400
\begin{array}{l}\phantom{361)}001\phantom{6}\\361\overline{)518400}\\\phantom{361)}\underline{\phantom{}361\phantom{999}}\\\phantom{361)}157\\\end{array}
Find closest multiple of 361 to 518. We see that 1 \times 361 = 361 is the nearest. Now subtract 361 from 518 to get reminder 157. Add 1 to quotient.
\begin{array}{l}\phantom{361)}001\phantom{7}\\361\overline{)518400}\\\phantom{361)}\underline{\phantom{}361\phantom{999}}\\\phantom{361)}1574\\\end{array}
Use the 4^{th} digit 4 from dividend 518400
\begin{array}{l}\phantom{361)}0014\phantom{8}\\361\overline{)518400}\\\phantom{361)}\underline{\phantom{}361\phantom{999}}\\\phantom{361)}1574\\\phantom{361)}\underline{\phantom{}1444\phantom{99}}\\\phantom{361)9}130\\\end{array}
Find closest multiple of 361 to 1574. We see that 4 \times 361 = 1444 is the nearest. Now subtract 1444 from 1574 to get reminder 130. Add 4 to quotient.
\begin{array}{l}\phantom{361)}0014\phantom{9}\\361\overline{)518400}\\\phantom{361)}\underline{\phantom{}361\phantom{999}}\\\phantom{361)}1574\\\phantom{361)}\underline{\phantom{}1444\phantom{99}}\\\phantom{361)9}1300\\\end{array}
Use the 5^{th} digit 0 from dividend 518400
\begin{array}{l}\phantom{361)}00143\phantom{10}\\361\overline{)518400}\\\phantom{361)}\underline{\phantom{}361\phantom{999}}\\\phantom{361)}1574\\\phantom{361)}\underline{\phantom{}1444\phantom{99}}\\\phantom{361)9}1300\\\phantom{361)}\underline{\phantom{9}1083\phantom{9}}\\\phantom{361)99}217\\\end{array}
Find closest multiple of 361 to 1300. We see that 3 \times 361 = 1083 is the nearest. Now subtract 1083 from 1300 to get reminder 217. Add 3 to quotient.
\begin{array}{l}\phantom{361)}00143\phantom{11}\\361\overline{)518400}\\\phantom{361)}\underline{\phantom{}361\phantom{999}}\\\phantom{361)}1574\\\phantom{361)}\underline{\phantom{}1444\phantom{99}}\\\phantom{361)9}1300\\\phantom{361)}\underline{\phantom{9}1083\phantom{9}}\\\phantom{361)99}2170\\\end{array}
Use the 6^{th} digit 0 from dividend 518400
\begin{array}{l}\phantom{361)}001436\phantom{12}\\361\overline{)518400}\\\phantom{361)}\underline{\phantom{}361\phantom{999}}\\\phantom{361)}1574\\\phantom{361)}\underline{\phantom{}1444\phantom{99}}\\\phantom{361)9}1300\\\phantom{361)}\underline{\phantom{9}1083\phantom{9}}\\\phantom{361)99}2170\\\phantom{361)}\underline{\phantom{99}2166\phantom{}}\\\phantom{361)99999}4\\\end{array}
Find closest multiple of 361 to 2170. We see that 6 \times 361 = 2166 is the nearest. Now subtract 2166 from 2170 to get reminder 4. Add 6 to quotient.
\text{Quotient: }1436 \text{Reminder: }4
Since 4 is less than 361, stop the division. The reminder is 4. The topmost line 001436 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1436.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}