Evaluate
\frac{19}{10}=1.9
Factor
\frac{19}{2 \cdot 5} = 1\frac{9}{10} = 1.9
Share
Copied to clipboard
\begin{array}{l}\phantom{270)}\phantom{1}\\270\overline{)513}\\\end{array}
Use the 1^{st} digit 5 from dividend 513
\begin{array}{l}\phantom{270)}0\phantom{2}\\270\overline{)513}\\\end{array}
Since 5 is less than 270, use the next digit 1 from dividend 513 and add 0 to the quotient
\begin{array}{l}\phantom{270)}0\phantom{3}\\270\overline{)513}\\\end{array}
Use the 2^{nd} digit 1 from dividend 513
\begin{array}{l}\phantom{270)}00\phantom{4}\\270\overline{)513}\\\end{array}
Since 51 is less than 270, use the next digit 3 from dividend 513 and add 0 to the quotient
\begin{array}{l}\phantom{270)}00\phantom{5}\\270\overline{)513}\\\end{array}
Use the 3^{rd} digit 3 from dividend 513
\begin{array}{l}\phantom{270)}001\phantom{6}\\270\overline{)513}\\\phantom{270)}\underline{\phantom{}270\phantom{}}\\\phantom{270)}243\\\end{array}
Find closest multiple of 270 to 513. We see that 1 \times 270 = 270 is the nearest. Now subtract 270 from 513 to get reminder 243. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }243
Since 243 is less than 270, stop the division. The reminder is 243. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}