Evaluate
\frac{512}{27}\approx 18.962962963
Factor
\frac{2 ^ {9}}{3 ^ {3}} = 18\frac{26}{27} = 18.962962962962962
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)512}\\\end{array}
Use the 1^{st} digit 5 from dividend 512
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)512}\\\end{array}
Since 5 is less than 27, use the next digit 1 from dividend 512 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)512}\\\end{array}
Use the 2^{nd} digit 1 from dividend 512
\begin{array}{l}\phantom{27)}01\phantom{4}\\27\overline{)512}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)}24\\\end{array}
Find closest multiple of 27 to 51. We see that 1 \times 27 = 27 is the nearest. Now subtract 27 from 51 to get reminder 24. Add 1 to quotient.
\begin{array}{l}\phantom{27)}01\phantom{5}\\27\overline{)512}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)}242\\\end{array}
Use the 3^{rd} digit 2 from dividend 512
\begin{array}{l}\phantom{27)}018\phantom{6}\\27\overline{)512}\\\phantom{27)}\underline{\phantom{}27\phantom{9}}\\\phantom{27)}242\\\phantom{27)}\underline{\phantom{}216\phantom{}}\\\phantom{27)9}26\\\end{array}
Find closest multiple of 27 to 242. We see that 8 \times 27 = 216 is the nearest. Now subtract 216 from 242 to get reminder 26. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }26
Since 26 is less than 27, stop the division. The reminder is 26. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}