Solve for R
R=\frac{\sqrt{262655}}{5}-100\approx 2.499756097
R=-\frac{\sqrt{262655}}{5}-100\approx -202.499756097
Share
Copied to clipboard
506.2=R^{2}+200R
Use the distributive property to multiply R by R+200.
R^{2}+200R=506.2
Swap sides so that all variable terms are on the left hand side.
R^{2}+200R-506.2=0
Subtract 506.2 from both sides.
R=\frac{-200±\sqrt{200^{2}-4\left(-506.2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 200 for b, and -506.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
R=\frac{-200±\sqrt{40000-4\left(-506.2\right)}}{2}
Square 200.
R=\frac{-200±\sqrt{40000+2024.8}}{2}
Multiply -4 times -506.2.
R=\frac{-200±\sqrt{42024.8}}{2}
Add 40000 to 2024.8.
R=\frac{-200±\frac{2\sqrt{262655}}{5}}{2}
Take the square root of 42024.8.
R=\frac{\frac{2\sqrt{262655}}{5}-200}{2}
Now solve the equation R=\frac{-200±\frac{2\sqrt{262655}}{5}}{2} when ± is plus. Add -200 to \frac{2\sqrt{262655}}{5}.
R=\frac{\sqrt{262655}}{5}-100
Divide -200+\frac{2\sqrt{262655}}{5} by 2.
R=\frac{-\frac{2\sqrt{262655}}{5}-200}{2}
Now solve the equation R=\frac{-200±\frac{2\sqrt{262655}}{5}}{2} when ± is minus. Subtract \frac{2\sqrt{262655}}{5} from -200.
R=-\frac{\sqrt{262655}}{5}-100
Divide -200-\frac{2\sqrt{262655}}{5} by 2.
R=\frac{\sqrt{262655}}{5}-100 R=-\frac{\sqrt{262655}}{5}-100
The equation is now solved.
506.2=R^{2}+200R
Use the distributive property to multiply R by R+200.
R^{2}+200R=506.2
Swap sides so that all variable terms are on the left hand side.
R^{2}+200R+100^{2}=506.2+100^{2}
Divide 200, the coefficient of the x term, by 2 to get 100. Then add the square of 100 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
R^{2}+200R+10000=506.2+10000
Square 100.
R^{2}+200R+10000=10506.2
Add 506.2 to 10000.
\left(R+100\right)^{2}=10506.2
Factor R^{2}+200R+10000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(R+100\right)^{2}}=\sqrt{10506.2}
Take the square root of both sides of the equation.
R+100=\frac{\sqrt{262655}}{5} R+100=-\frac{\sqrt{262655}}{5}
Simplify.
R=\frac{\sqrt{262655}}{5}-100 R=-\frac{\sqrt{262655}}{5}-100
Subtract 100 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}